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ASSESSMENT OF THE SECURITY LEVEL OF MODERN STANDARDIZED
CRYPTOGRAPHIC TRANSFORMATIONS

Naspikl. B., UYesapgiHB. €, Mapuyk O.B. OuiHka piBHA 6e3nekn CcyyvyaCHUX CTaHAapTU30BaHNX
KpunTorpagiyHnx nepeTBOPEHb.

CyyacHi cucTemMum KpunTorpaiyHoro 3axucTy iHgopmauii, fKi OyayloTbCA Ha OCHOBI MaTemMaTWYHUX
nepeTBOPeHb B KifbLi, rpyni Ta rpyni TOYOK eNinTUYHNX KpuBKX, Gifblie He BBA>KAKThCS MEPCNEKTMUBHUM HaMPAMKOM
[N MOAaNnbLIOro po3BUTKY CUCTEM 3axucTy iHdopmauii. Lie nosh3aHo 3 NosiBOK peanbHOr0 KBaHTOBOro Komn oTepa,
WO Npu3Beno [0 aKTUBI3auil HOBOro eTany po3BUTKY KPUNTOCACTEM, SIKUA YMOBHO Ha3MBalTb MOCTKBAHTOBUMU
cTabinbHUMN KpunTorpagivyHuMm anropuTMamum.

Y paHil cTaTTi HaBOAMTbLCA OuiHKa PpiBHA 6e3nekn ICHYHUMX CTaH4apTWU30BaHWX KPUNTOCUMCTEM i
NepcneKTUBHUX KPUNTOANrOpUTMiB, NOTEHUIAHO CTIiNKMX [0 KBAHTOBOrO KpunTOaHanisy. PiBeHb 6e3nmekn iCHyrumnx
aCUMETPUYHNX KPUMTOCUCTEM A1 KBAaHTOBOIO KpUNTOaHanisy € nofiHOMianbHUM. [loKa3aHo 3aneXkHicTb
KpunTorpagiyHoi CTIKOCTi anropuTMy Bif Po3Mipy 3aranbHOCUCTEMHUX NapameTpiB. HaBefeHi 0OMe>KeHHA ans
NpPOBe/EeHHs KBAHTOBOIO KpUNTOaHanidy Ha TenepiLlHiii vac.

Y cTaTTi HaBefeHi 3HAYeHHA 3aranbHOCUCTEMHUX NapameTpiB KpMNTOCUCTEMU HA OCHOBI eNinTUYHNX KPUBKX,
AKi MOXKYTb JaTu Yac 1S nepexofy A0 NOCTKBaHTOBOI KpunTorpadii. TakodK nokasaHi Taki KpunTocucTeMmu, siK
SIKE, SIDH, siki MaloTb 3anac KpunTOCTIKOCTI [0 KBAHTOBOr0 KpMnToaHanisy Ta MoXKN1BIiCTb NobYyA0BM Ha TX OCHOBI
NOCTKBAHTOBOI0 anropuTMy eNeKTPOHHOI0 L poBOro NiANMCY Ta iHKancynauii Knouis.

KniouoBi cnoBa: NnocTKBaHTOBA KpunTorpadis, KBaHTOBUIA KpunToaHanis, anropuTm LLopa, RSA, ECC.

Modern systems of cryptographic protection ofinformation, which are based on mathematical transformations in
the ring, group, and group ofpoints ofelliptic curves are no longer considered apromising areaforfurther development of
information security systems. This is due to the emergence ofthe real quantum computer, which led to the activation ofa
new stage in the development of cryptosystems, which are conventionally called post-quantum stable cryptographic
algorithms.

This article provides an assessment ofthe existing standardized cryptosystems security level and promising crypto-
algorithms potentially resistant to quantum cryptanalysis. The security level of existing asymmetric cryptosystems for
quantum cryptanalysis is polynomial. The dependence of the algorithm security level on the size of the system-wide
parameters is shown. The limitationsfor conducting quantum cryptanalysis at the present time are given.

The article gives the values o fsystem-wide parameters ofthe elliptic curves cryptosystem, which can give timefor
the transition to post-quantum cryptography. Also shown are such cryptosystems as SIKE, SIDH, which have a margin of
cryptoresistance to quantum cryptanalysis and the possibility of building a post-quantum electronic digital signature and
key encapsulation algorithm ofon their basis.

Keywords: postquantum cryptography, quantum cryptanalysis, Shor % algorithm, RSA, ECC.

1. Statement of the problem and relevance of the research

Nowadays, the security level is one of the main indicators of information security which is
transmitted and processed in information systems. The security level of the algorithm is based on the
complexity of solving certain mathematical problems (factorization of large integers, solving a discrete
logarithm, etc.). The complexity of computing these problems on modern computers is sub-
exponential or exponential. However, the appearance of the first quantum computer made it obvious
the possibility of using Shor's [1] and Grover's [2] cryptanalysis algorithms to solve certain
mathematical problems with polynomial complexity, which endangered the existing cryptographic
information protection algorithms [3].

The creation of a quantum computer capable of computing Shor's cryptanalysis algorithm or
Grover's unordered database search algorithm for standardized cryptosystems may cause threats to the
security of critical infrastructure objects.

2. Main part.

Well-known algorithms for asymmetric transformation in a ring, a group, and a group of elliptic
curve points are RSA, DSA, ECC, ECDSA, ECRSA, and others similar to them. Most attacks on such
cryptosystems are aimed at finding the private key. Thus, for the RSA cryptosystem, the resistance
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against such kind of attack is based on the complexity of the factorization of module N. It is believed
that the best factorization algorithm is the algorithm of the general lattice of the numerical field or its
modification. The time complexity [5] of such algorithms is subexponential and is calculated by
expression (1):

0(exp(S +0(1)(InN)y) (InInN)1y), S= 192y = 1. Q)

Shor's algorithm has polynomial complexity. It can decompose a large prime number into prime
factors in a time approximately equal to (2):

0(4n3), 2
it requires the following number of qubits (3):
0(2n), (3)
where n - module size.
Example 1
Let's evaluate the RSA-512 cryptographic algorithm cryptanalysis complexity for Shor's
algorithm (2, 3):
0(4n3) = 0(4 x 5123) = 0(536870912) * 0(11,5 x 1010).
The required number of qubits to implement the specified algorithm:

0(2n) = 2 x 512 = 1024.

Table 1 shows the estimation values of the quantum cryptanalysis algorithm parameters for the
RSA cryptosystems.

Table 1
Module size, Required number The complexity of quantum The complexity of quantum
bits of qubits cryptanalysis cryptanalysis
512 1024 0,5 x 108 1,6 x 1019
768 1536 1,8 x 109 9,9 x 102
1024 2048 4,3 x 109 12 x 1026
2048 4096 3,4 x 1010 1,35 x 103
3072 6144 11,5 x 1010 5x 1041
15360 30720 15x 1013 9,2 x 108
1,00E+81
1,00E+72
1,00E+63
1,00E+54
1,00E+45
1,00E+36
1,00E+27
1,00E+18
1,00E+09
1,00E+00
00 768,00 1024,00 2048,00 3072,00 15360,00
Quantum cryptanalysis Classical cryptanalysis
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Fig. 1 Complexity of RSA cryptanalysis
From the results of analytical evaluations (Table 1) and the graph (Fig. 1), we can see that even
with a key length of 15360 bits, only 1,5 x 1013 operations are needed on a quantum computer, which

means that this algorithm can be broken in polynomial time.
Problems of the elliptic curves discrete logarithm can be solved using p-Pollard's and

X-methods, it's complexity is estimated by expression (4):
0(77), (4)

where q = 2n, and n - base point size.

In addition, in the general case, Shor's quantum algorithm is capable to solve the logarithmic
equation [4] with an approximate complexity:

0(360n3). (5)
For this, you need to use a quantum computer with the number of the qubits equal to:

(6)

Example:
Let's evaluate the complexity of classical and quantum algorithms of discrete logarithms in a

group of points of an elliptic curve with the base point order size ord(E) = 110 bits.
The complexity of classical cryptanalysis for the specified algorithm will be:
0(7?) =nnN~™ = 36028797 018 963 968 * 3,6 x 1016.

The complexity of quantum cryptanalysis for the specified algorithm will be:
0(360n3) = 479 160 000 * 0,5 x 109.

For this implementation, you need to use a quantum computer with the number of the qubits
equal to:

0(7n + 4/o#2n + 10) = 7 x 110 + 4/0#2110 + 10 = 807.125 ... * 808.

Table 2 shows the parameter estimation values of the quantum cryptanalysis algorithm for
cryptosystems on elliptic curves.

Table 2

Basepoint size, bits Required n_umber of The complexity of_ The complexity of_

qubits quantum cryptanalysis quantum cryptanalysis
110 808 0,5x 109 3,6 x 1016
163 1181 1,5 x 109 3,4 x 1024
224 1610 4 x 109 52 x 1033
256 1834 6 x 109 3,4x 1038
509 3609 4,7 x KO10 4,1 x 1076
571 4044 6,7 x K010 8,8 x 10&%
1024 7218 3,8x 1011 1,3 x 1014
2048 14390 3,1 x 1012 1,8 x KO308
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1,00E+155
1,00E+150
1,00E+145
1,00E+140
1,00E+135
1,00E+130
1,00E+125
1,00E+120
1,00E+115
1,00E+110
1,00E+105
1,00E+100
1,00E+95
1,00E+90
1,00E+85
1,00E+80
1,00E+75
1,00E+70
1,00E+65
1,00E+60
1,00E+55
1,00E+50
1,00E+45
1,00E+40
1,00E+35
1,00E+30
1,00E+25
1,00E+20
1,00E+15
1,00E+10
1,00E+05
1,00E+00
110 163 224 256 509 571 1024 2048

Classical cryptanalysis Quantum cryptanalysis

Fig. 2. Complexity of ECC cryptanalysis

From the results of analytical evaluations (Table 2) and the graph (Fig. 2), we can see that
increasing the base point order size does not significantly increase cryptographic stability during
quantum cryptanalysis, unlike classical cryptanalysis. This allows an attacker to perform gquantum
cryptanalysis in polynomial time.

Also, a comparison of analytical estimates, based on NIST recommendations [10] (Table 1,
Table 2) shows that ECC requires a much smaller length of keys to ensure a comparable security level
, Which is provided by long RSA keys [6], but the implementation of ECC quantum cryptanalysis
requires a smaller qubits number (Table 3).

Table 3
RSA key length, bits Required number of qubits ECC key length, bits Required number of qubits
2048 4096 224 1610
3072 6144 256 1834

In both cases, quantum cryptanalysis requires a large number of qubits, which makes it
impossible. However, eventually, such a computer will be created, so the transition to new algorithms
resistant to quantum cryptanalysis must be done in advance.

New cryptographic transformations and the possibilities of their application published in open
sources over the last 10 years are listed in Table 4 [8].
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Algorithm,
Main cryptographic
assumption

NTRU, NTRU
PRIME, Falcon
lattice-based

Rainbow
multivariable
polynomials

SPHINCS+, Picnic
hash-bhased

McElice
Codes usage

SIKE, SIDH
(supersingular)
isogeny walk problem
Based on isomorphic
transformations in the
elliptic curves group
of points [7]

Used operations

Matrix
multiplication

Matrix
multiplication,
solving a linear

system of
equations

Hash functions
(sha256/512,
sha2, sha3)

Matrix
multiplication,
decoding

Operations with
elliptic curves

Operations with
elliptic curves

3. SIDH analysis.

One of the current areas of research is the development of new cryptographic algorithms using
existing platforms and libraries of software functions that will meet the growing requirements for
cryptographic stability of algorithms in the face of the increasing power of quantum computers.
Algorithms based on the isogeny of the elliptic curve are a promising direction for the development of
postquantum cryptosystems. So, let's take a closer look at operations, used in SIDH algorithm.

Let the elliptic curve be given by the Weierstrass equation:

where
shown in Table 5.

P1 P2

(0,)  (0,18)

P12 P13
(10,17) (13,8)

The order of the curve is equal to

P3 P4

27 (2,12

P14 P15
(13,11) (14,2)

Public Key length
(bits)
depending on the
selected
parameters
NTRU -
699-2401

NTRU PRIME -
897-2067

Falcon - 897, 1793

60192-1930600

SPHINCS+ -
64-128

Picnic - 33-65

McElice -
261120-1357824

SIDH - 134-564
SIKE - 197-564

Dual EC DRBG -
256-521

P5 P6
(5.6) (513)
P16 P17

(14,17) (15,3)
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Table 4
Prlvate(lP)(ig length Ability to Akz[lcl) ity
depending on the c(;ieaittzla encrypt/
selected . r?atur o decrypt
parameters g data
NTRU - 935-2983
NTRU PRIME - + +
1125-3059
Falcon - 1281, 2305
64-1408736 + -
SPHINCS+ -
7856-49856 + i
Picnic - 49-97
McElice - + +
6452-14080
SIDH - 28-48 i +
SIKE - 350-644
Dual EC DRBG - + i
256-521

, (")

. The points of this curve are

Table 5
P7 P8 P9 P10 P11
(7,3) (7,16) (9,6) (9,13) (10,2)
P18 P19 P20 P21 -
(15,16) (16,3) (16,16) o] -


https://en.wikipedia.org/wiki/Lattice-based_cryptography
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Curve (7) has 2 subgroups with orders 3 and 7. For example, for a group of order 3, these are the
points: (2,7), (2,12), O.
Definition 1 Group [11].
The set G with the binary operation “*” defined on it is called a group if:
1) operation “*” is associative, that means that forany a, b, cEG, a*a*(b*c) = (a*b) *c c;
2) there is a neutral (single) elemente £ G, thate*a = a*e = aforalla £ G;
3) for every element exists opposite element
Definition 2. Subgroup [11].
A subgroup H of a group G is a subset of H, which is also a group concerning the same group
operation defined in group G.
Definition 3. Lagrange's theorem [11].
Let G be a finite group. Then,
|G| = (G H)x[H]. (8)
Definition 4. Bijection.
A bijection is a mapping in which each element of one set corresponds to exactly one element of
another set, with an inverse mapping having the same property defined.
Definition 5. Isomorphism, homomorphism, automorphism.
The mapping is called:
- homomorphism, if for any
h1,/i2 £ H:/(h! ./i2) = [(hx) X/(/i2); 9

- isomorphism, iff is homomorphism and bijection;

- automorphism, iff is an isomorphism and H = G.

Definition 6. Isogeny [11].

The isogeny of the elliptic curve is a non-constant rational mapping of the curve E1 over a finite
field F into the curve E2 which is also called a group homomorphism and is given as:

(x5 y) - (FI06 y)/f2(% ¥),91(x; y)/ 92(%; ¥)), (10)
wherefl, f2, gl, g2 - are polynomials.

Example:

Let's obtain the isogeny ofthe elliptic curve (7).

The isogeny of the curve can be obtained using the Velu algorithm with the isogeny nucleus
C:{0, (2,7),(2,12)}, where the nucleus of isogeny is a cyclic subgroup of simple order. We obtain the
isogeny curve by the Velu algorithm. Let us take curve (7).

Velu algorithm for C: {0, (2,7),(2,12)}

1 Dropping a point at infinity.

2. Finding C2is a set of points of a pair order. R - the rest of the points. There are no points of
a pair order in sub-group C.

3. Breaking R into two parts R+ and R_. For R+we choose the point (2;7). Point (2;12) is
opposite, because 7 = —12 mod 19
4. Set S= {(2,7)} Cycle consist of one step because the S set includes one point.

, coordinates are
g% =3%*22+ 1= 13
gP=-2*7 =5
Vq=2*13=7
Ug=52=6
v=7
6+ 2*7
A'=1—5*7 =4
26
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5'=1—7*1 =13

We calculate rational reflection (s,y) —(a,/?), using the nucleus (x,y) —(a,/?) of the
curve (7).

F--YQ
I oagees \(X  XQ (X _ Xgy

7 . 6 Xx3—4x2+ IIx —8

X —2 (x —2)2 X2 —4x + 4
2y y~yQ 9q9q

Up —————3 s Vg 2 2

(x-xQ) " T (x-xQ)"  (x-xQ)

x3y —6x2y + 5xy —6y
A X3 —6x2 + 12X —8

Reflection (p: (x,y) —(a,/ )

We calculate rational reflection , using the nucleus of curve
on curve
Table 6
Point coordinates Point coordinates
No
of  curve of £2curve
1 0,2
2. (7,16) (17, 15)
3 (14,17)
4, (0,18)
5 (7,3) (17, 4)
6. (14,2)
1. (5,6)
8. (10,2) (8, 5)
0. (16,16)
10. (5,13)
11, (10,17) (8, 14)
12. (16,3)
13. (9,6)
14. (13,11) (14, 1)
15. (15,3)
16. (9,13)
17. (13,8) (14, 18)
18. (15,16)
19. (2,7)
20. (2,12) O
21. O

Vélu algorithm for C:{O, (10,2), (10,17),(14,2),(14,7),(15,3),(15,16)}

1 Dropping a point at infinity.

2. Finding C2is a set of points of a pair order. R - the rest of the points. There are no points of a
pair order in sub-group C.

3. Breaking R into two parts R+ and R_. For R+we choose points (10, 2), (14, 2), (15, 3). Points
(10, 17), (14, 17), (15, 16) are opposite, because 2 = —17mod 19 and 3 = —16 mod 19
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4. Set5 = {(10, 2),

(14, 2), (15,3)}

The cycle consists of three steps because the S set includes three points.

First step:

Second step:

Third step:

Q= (10,2), coordinates are xQ= 10,yQ= 2.

gs =3*102+ 1= 16
Ph=-2%2 =15
Vg=2%*16 = 13

uQ=152= 16

Q= (14,2), coordinates are xQ= 14,yQ= 2.

Ph=3%142+1=0
gQ=-2*2 = 15
Ve = 2%0 - 0
UQ=152= 16

Q = (15, 3), coordinates are xQ= 15,yQ= 3.

Po=3*152+1=11
No=-2*%3 =13
= 2*11 =3
uQ =132 =17
v=13+0+3=16

w= (16 + 10 *13) + (16 + 14 *0) + (17 + 15*3) = 15

A'=1—-5*16 = 16
B'=1-7%15=10

We calculate rational reflection(s,y) -> (a,/?):

“Zx+M (N4 F AL

. o1 M3*(x-10) + 16 0*(x-14)+ 16  3*(x-15)+ 17\
N=X+V (x-102 1 (x-142 1

o=y _V Z

Reflectlon (p: (xfy£)_2

Point o

Point of £]
Point of £2
Point of £]
Point of £2
Point of £]

y y-y3 _
@5V Q(X-xQ3  Q(x-xQ2

(x-192 /-

9QQ )
(x-xQ2)’

13y

x3-11x2+15%x-12 X3-4x2+18x-8

(3y+(13y-7) (x-10)-12(x-10)

15y+(3y- 9) (x- 15)- 10(x- 15)

x3-7Tx2+10x-12

—@h (12, 7)

0,1 @7 (13) (73) (9.13)
(12, 12)

(0,18) (2,12) (5,6) (7,16) (9,6)
o)

(10,2) (10,17) (14,2) (14,17) (15,3)

28

(16,16)
(16,3)

(15,16)

(13,11)
(13,8)

)

Table 7
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The general idea of the protocol is that with the help of publicly available parameters Alice and

Bob perform separate calculations of isogenies of degree Z and 4y, respectively, calculating the
isogeny of large order over the secret nucleus (Fig. 4).

Public SIDH parameters include:

* A prime number p of the form Z°A2 of + 1, where Z and 4 are small prime numbers, a and
b are natural integers, and f is a cofactor.

» Supersingular elliptic curve, £0(£p2).

» Points {P4, 4} generated from £0[Z'] over Z/Z Z and points {PB, QB} generated from £0[4)]
over Z/fZ

The protocol consists of two rounds which can be divided into the following steps:

Calculating the secret nucleus R = ([m]P + [n]Q) for base points {P,Q}, where m and n are
private keys.

Calculation of isogeny over the secret nucleus, p:£ —£/(R), using the Velu algorithm for the
supersingular curve E.

Calculate the mappings of the base points of the base of the other side, {p (Popp),p (Qopp) }, for
the first round.

Thus, for the first round, Alice and Bob calculate the isogeny p4:£0—£4 = £0/ ([m4]P +
[NA\Q They apply isogeny to the base points of the other side. After the first round, Alice sends Bob
(E4,{p4(PB),p4(QB)}). Bob sends Alice (EB,{pB(P4),pB(@4)}) through the unprotected channel.
The second round consists of a similar calculation of isogeny, but with the public keys, they
exchanged. Alice calculates p”:£8 —E£4R=£R/([m4]pB(P4) + [n4]pB(Q4)), Bob calculates
pR:£4 —£B4 = £4/ ([mB]p4 (PB) + [nB]p4(QB)) To obtain a general secret, Alice calculates the j-
invariant of  , and Bob of

The safety assumption is based on the difficulty of calculating isogeny between supersingular
elliptic curves for which there is no subexponential algorithm known for quantum computers. Alice
generates private keys , Which are not divisible by . Bob also generates private keys

, Which are not divisible by

Fig. 3. SIDH algorithm scheme
Research on the security level, done with algorithms based on elliptic curves isogenies in [9]

shows that for classical cryptanalysis needed time is equal to 3,4 x 1038 with classical memory
1,8 x 1019, and that a quantum key recovery on AES-128 costs 1,2 x 1024 gates (which allows for
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1,1 x 1012 queries and 1,2 x 124 quantum time), and neglect polynomial factors. Then this would
requirep ~ 5280 bits, that is, multiplying by 10 the parameter size.

4. Conclusion.

This paper provides an assessment of the security level of the existing standardized
cryptosystems, the main cryptographic assumption of which is based on the complexity of integer
factorization and solving the problem of discrete logarithms and promising crypto-algorithms
potentially resistant to quantum cryptanalysis. The security level of existing asymmetric cryptosystems
to quantum cryptanalysis is polynomial, and system-wide parameters size increasing will not
significantly increase the security level. The current limitation for quantum cryptanalysis is the
required number of qubits.

The length of the system-wide parameters of a cryptosystem based on elliptic curves can be
increased to 2048 bits, in this case, a quantum computer must have 14390 qubits to crack such a
cryptosystem. It gives some time for the transition to post-quantum cryptography. It should also be
noted that such cryptosystems as the SIKE, SIDH algorithms have a margin of crypto resistance to
quantum cryptanalysis and the possibility of building a post-quantum algorithm of electronic digital
signature and key encapsulation on their basis.

The work also presented potential candidates for the post-quantum cryptography standard, their
differences, and the possibilities of their application
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