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АНАЛІЗ МЕТОДІВ ТА АЛГОРИТМІВ УПРАВЛІННЯ ДІАГРАМОЮ 

НАПРАВЛЕНОСТІ SMART АНТЕН НА РУХОМИХ ОБ’ЄКТАХ 

 
У роботі здійснено системний аналіз сучасних методів та алгоритмів управління діаграмою 

направленості Smart антен, що застосовуються на рухомих об’єктах у динамічних умовах. Розглянуто 

теоретичні основи адаптивного формування діаграми направленості, принципи цифрового формування променя 

(Digital Beamforming), а також особливості функціонування алгоритмів LMS, NLMS, RLS, MUSIC, ESPRIT, PSO 
та GA. Проаналізовано їх переваги, недоліки та умови ефективного застосування з урахуванням швидкості 

адаптації, обчислювальної складності, точності оцінки напрямку приходу сигналів (DOA) та стійкості до завад. 

У ході дослідження встановлено, що алгоритми класу LMS/NLMS забезпечують просту реалізацію та 

високу швидкодію, але обмежені точністю в умовах інтенсивних завад. Методи RLS характеризуються 

покращеною збіжністю, проте потребують значних обчислювальних ресурсів. Алгоритм MUSIC демонструє 

високу роздільну здатність при визначенні напрямку приходу сигналів, однак малопридатний до використання в 

реальному часі через складність спектрального аналізу. Стохастичні та еволюційні алгоритми (PSO, GA) 

виявили потенціал для оптимізації фазових і амплітудних параметрів антенних елементів, але мають низьку 

швидкість збіжності при змінних умовах. 

Результати аналітичного огляду свідчать про актуальність задачі створення комбінованих і адаптивних 

підходів, які поєднують високу точність оцінювання з оперативною реакцією на зміни середовища. Отримані 

висновки можуть бути використані як теоретична основа для подальших досліджень у напрямку розробки нових 
методів управління діаграмою направленості Smart антен на рухомих об’єктах, зокрема із застосуванням 

машинного навчання та інтелектуальної оптимізації. 

Ключові слова: Smart антени, адаптивне управління, діаграма направленості, антенна решітка,  цифрове 

формування променя, адаптація сигналу, просторове фільтрування, напрям приходу сигналу, 

багатопроменевість, завади, MANET, БпЛА. 

 

P. Khomenko, H. Radzivilov. Analysis of methods and algorithms for controlling the direction pattern of smart 

antennas on moving objects 

The paper presents a systematic analysis of modern methods and algorithms for controlling the directivity pattern 

of Smart antennas used on moving objects in dynamic conditions. The theoretical foundations of adaptive directivity 

pattern formation, the principles of digital beamforming (Digital Beamforming), as well as the features of the functioning 
of the LMS, NLMS, RLS, MUSIC, ESPRIT, PSO and GA algorithms are considered. Their advantages, disadvantages and 

conditions for effective application are analyzed, taking into account the speed of adaptation, computational complexity, 

accuracy of estimating the direction of arrival of signals (DOA) and resistance to interference. 

The study found that LMS/NLMS class algorithms provide simple implementation and high speed, but are limited 

in accuracy under conditions of intense interference. RLS methods are characterized by improved convergence, but 

require significant computational resources. The MUSIC algorithm demonstrates high resolution in determining the 

direction of arrival of signals, but is not suitable for real-time use due to the complexity of spectral analysis. Stochastic 

and evolutionary algorithms (PSO, GA) have shown potential for optimizing the phase and amplitude parameters of 

antenna elements, but have a low convergence rate under variable conditions. 

The results of the analytical review indicate the relevance of the task of creating combined and adaptive 

approaches that combine high accuracy of assessment with operational response to environmental changes. The 

conclusions obtained can be used as a theoretical basis for further research in the direction of developing new methods 
for controlling the directivity pattern of Smart antennas on moving objects, in particular using machine learning and 

intelligent optimization. 

Keywords: Smart antennas, adaptive control, beamforming, antenna array, digital beamforming, signal 

adaptation, spatial filtering, direction of arrival, multipath, interference, MANET, UAV. 

 

Наукова постановка задачі. Сучасні бездротові телекомунікаційні системи стрімко 

розвиваються у напрямку підвищення якості зв’язку, збільшення швидкості передавання 

даних і забезпечення надійності комунікацій в умовах апріорної невизначеності (відсутність 

завчасної інформації про просторові параметри джерела сигналу або перешкоди, які можуть 

динамічно змінюватись в часі). Особливої актуальності набуває задача ефективного 
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управління діаграмою направленості (ДН) антен при організації зв’язку на рухомих об’єктах, 

таких як автомобілі, безпілотні літальні апарати, морські судна та мобільні платформи 

спеціального призначення. 

Одним із найбільш перспективних рішень у цій галузі є використання Smart антен –

інтелектуальних антенних систем, які здатні автоматично формувати та змінювати свою ДН 

залежно від просторового розташування джерела сигналу та умов середовища. Smart антени 

можуть забезпечувати підвищену ефективність використання спектра, покращують якість 

прийому сигналу та зменшують вплив перешкод завдяки адаптивному управлінню ДН. 

Однак у випадку рухомих об’єктів, управління ДН ускладнюється постійною зміною 

положення антени у просторі відносно передавача або приймача сигналу, а також впливом 

додаткових факторів, таких як багатопроменевість, втрати видимості прямої лінії (LoS) та 

наявність перешкод. Враховуючи вищенаведене, з’являється необхідність застосування 

спеціальних методів визначення напрямку на джерело сигналу (DoA) та алгоритмів 

адаптивного формування ДН в реальному часі. 

Аналіз останніх досліджень і публікацій 

Сучасний стан розвитку інтелектуальних антенних систем на рухомих платформах 

характеризується інтенсивними дослідженнями у галузі адаптивного управління ДН та 

алгоритмів швидкого переналаштування в умовах динамічного середовища. Особлива увага 

дослідників зосереджена на розробці методів адаптації фазового розподілу антенних 

елементів у реальному часі, вдосконаленні технологій визначення напрямку приходу сигналу 

та багатопроменевого поширення радіохвиль. 

Так, колектив дослідників [1] Zhu (2025) розробив експериментальну систему 

двовимірного визначення напрямку для радіочастотних сигналів БпЛА, побудовану на основі 

шестиканальної кільцевої антенної решітки з інтеграцією гібридного алгоритму MUSIC-WAA. 

Застосування методу прискореного зваженого усереднення дозволило досягти суттєвого 

скорочення обчислювальних витрат спектрального пошуку – понад 97,9 % при кутовій 

роздільній здатності 0,1°, скорочення з 3 240 000 до 1200 обчислень спектральної функції. 

Експериментальна перевірка показала середньоквадратичну похибку визначення 

азимутального кута на рівні 7,0° та кута місця 7,7° для дистанцій 30–200 м при висотах цілі 

20–90 м. Дослідники підкреслюють вплив обмеження геометрії кільцевої конфігурації щодо 

чутливості у вертикальній площині, що ускладнює точне визначення висотних параметрів цілі. 

Додатковими факторами деградації точності є багатопроменеві відбиття та стохастичні 

завади, які порушують когерентність сигналів під час динамічного руху об’єкта. 

У дослідженні Shubber Z. A. та співавторів (2024) [2] представлено модель, що 

самоналаштовує управління випромінювача восьмиелементної лінійної решітки базової 

станції, на основі алгоритму найменших середньоквадратичних відхилень із застосуванням 

LMS. Принципова особливість запропонованого підходу полягає у відсутності апріорного 

знання кутових координат сигналів. Також підкреслено, що процес адаптації ДН здійснюється 

виключно за статистичними характеристиками вхідних сигналів. Результати комп’ютерного 

моделювання підтвердили спроможність алгоритму забезпечувати відносно точне наведення 

головного променя на корисного абонента з одночасним формуванням глибоких провалів у 

напрямках джерел завад. Показано ефективність методу для сценаріїв мобільного зв’язку з 

невідомою локалізацією абонента за умови знання статистичних параметрів сигналу та часової 

структури передачі. Однак результати базуються виключно на моделі, яка не враховує 

середовище розповсюдження радіосигналів, що залишає питання щодо складних 

непрогнозованих завадових факторів. 

Робота Lu Q. та співавторів (2023) [3] пропонує комбінований алгоритм адаптивного 

формування променя, що поєднує метод постійного модуля із рекурсивним алгоритмом 

найменших квадратів для супроводження рухомих цілей в умовах завад. Алгоритмічна 

структура включає адаптивний коефіцієнт забування, змінний параметр регуляризації та 
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ковзне вікно для мінімізації стаціонарного шуму. Розроблений метод SW-AFVF-CMARLS 

продемонстрував у сценаріях супутникового зв’язку та комунікації покращення точності 

збіжності, принаймні у 10 разів, та прискорення налаштування променя вдвічі порівняно з 

традиційними RLS-реалізаціями.  

Автор статті Bismor D. (2023) [4] досліджував формування променя розподіленою 

групою антенних елементів на мобільних платформах з урахуванням позиційних похибок. 

Використовуючи алгоритм оптимізації роєм частинок, автори оптимізували параметри ДН та 

проаналізували статистичні властивості. Встановлено критичну межу при нормованій 

середньоквадратичній похибці позиціювання антенних елементів понад 0,4λ, середня діаграма 

набуває практично ізотропного характеру, унеможливлюючи ефективне формування вузького 

променя. Зменшення позиційної похибки відновлює структуру головного пелюстка, тоді як 

збільшення кількості елементів масиву підвищує глибину та стабільність нульових рівнів 

завдяки статистичному усередненню.  

У публікаціях 2023–2024 років [5; 6] активно розвиваються удосконалені версії 

класичних алгоритмів DoA-оцінки та оптимізації ДН. Для підвищення роздільної здатності за 

наявності узгоджених джерел розроблено модифікації методів MUSIC/ESPRIT, зокрема  

MR-UESPRIT з відновленням характеристик антенної решітки для розрізнення сильно 

корельованих сигналів.  

Застосування метаевристичних алгоритмів, таких як PSO, показало високу ефективність 

для багатокритеріальної оптимізації великих і розріджених антенних структур. PSO 

забезпечує одночасний контроль ширини головного променя та рівня бокових пелюстків при 

синтезі складних апертур завдяки точному налаштуванню вагових коефіцієнтів елементів.  

Генетичні алгоритми знайшли застосування в оптимізації просторової конфігурації 

антенних масивів у задачах акустичного виявлення БпЛА, що представлено в  роботі авторів 

Itare N та ін. [7] GA  забезпечують зниження середньої похибки визначення напрямку до <10° 

по азимуту та <5° по куту місця відносно GPS-траєкторії. Популяційний підхід GA забезпечує 

глобальний пошук оптимуму та можливість врахування множинних критеріїв оптимізації, 

сприяючи мінімізації ширини головного пелюстка та зниженню рівня бокових пелюстків. 

Проведений аналіз показує перспективу алгоритмів MUSIC-класу з прискоренням WAA 

для інтеграції у компактних антенних системах зв’язку з рухомими об’єктами, забезпечуючи 

двовимірну оцінку напрямку у реальному часі при обмежених обчислювальних ресурсах. 

Однак точність визначення кута місця та стійкість до багатопроменевості залежать від 

геометричної конфігурації решітки та умов поширення радіохвиль. Методи адаптивного 

формування променя LMS/RLS-класу показують відмінні характеристики в умовах 

моделювання, підтверджуючи можливість стабільного супроводу цільових сигналів та 

ефективного подавлення завад без точної локалізації абонентів.  

Аналіз досліджень і публікацій вказує на те, що недостатньо опрацьованими 

залишаються питання аналізу ефективності різних адаптивних алгоритмів у динамічних 

сценаріях із урахуванням складної завадової обстановки. 

Тому, метою дослідження є проведення аналізу та порівняння ефективності відомих 

методів та алгоритмів адаптивного управління ДН Smart антен в динамічних середовищах, що 

в подальшому дозволить знайти нові підходи до управління ДН.  

Виклад основного матеріалу 

Для проведення аналізу оцінки ефективності існуючих адаптивних алгоритмів 

управління ДН, що застосовуються у Smart антенах на рухомих об’єктах, у роботі 

застосовується комплексний підхід за наступними критеріями оцінювання [8; 9]: 

час адаптації, тобто здатність алгоритму забезпечити швидке перелаштування ДН Smart 

антени у відповідь на зміну положення рухомого об’єкта в просторі для підтримання 

стабільного зв’язку в динамічних умовах функціонування; 
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точність наведення, спроможність досліджуваних алгоритмів забезпечити формування 

ДН у напрямку цільового джерела сигналу з мінімальними відхиленнями від оптимальної 

траєкторії наведення); 

обчислювальні ресурси (визначення вимог до обчислювальної потужності та ресурсів 

системи, необхідних для функціонування конкретного алгоритму в режимі реального часу); 

придатність до роботи в реальному часі, що визначає здатність роботи алгоритму в 

умовах динамічного середовища.  

В результаті аналізу наукових досліджень визначено, що для формування та управління 

ДН Smart антен на рухомих об’єктах, як правило застосовуються адаптивні алгоритми, які 

наведено нижче: 

1. NLMS (NormalLeast Mean Squares). 

2. RLS (Recursive Least Squares). 

3. Левенберга – Марквардта (Levenberg-Marquardt Algorithm). 

4. PSO (Particle Swarm Optimization/ метод чисельної оптимізації). 

5. Генетичні алгоритми (ГА). 

6. MUSIC-WAA (Multiple Signal Classification – Weighted Average Algorithm). 

Вибір саме цих алгоритмів обумовлений необхідністю комплексного охоплення методів 

із різною складністю, структурою та підходами до оптимізації. 

Для аналізу вищенаведених алгоритмів необхідно детально розглянути їх механізми 

відносно рішення задачі адаптивного управління ДН. 

NLMS-алгоритм (Normal Least Mean Squares) [10] є основним представником класу 

стохастичних градієнтних алгоритмів адаптивної фільтрації, що базується на теорії 

Вінерівської фільтрації із застосуванням методу найменших квадратів для мінімізації 

середньоквадратичної похибки. На відміну від детерміністичних методів оптимізації, LMS 

використовує стохастичну оцінку градієнта цільової функції, що забезпечує простоту 

реалізації та стійкість в умовах нестаціонарного сигнального середовища. Також необхідно 

зазначити, що LMS є одним із фундаментальних алгоритмів, який застосовується для 

адаптивного управління ДН Smart антен. Кожна ітерація LMS-алгоритму включає три основні 

етапи послідовної обробки: 

Етап 1. На першому етапі алгоритму відбувається процес обчислення вихідного сигналу 

фільтра 𝑦(𝑛) на основі лінійної комбінації зважених вхідних відліків : 

     

 𝑦(𝑛) = ∑ 𝑤𝑖(𝑛)𝑥(𝑛 − 𝑖)𝑁−1
𝑖=0 = 𝑤𝑇(𝑛)𝑥(𝑛)b, (1) 

 

де 𝑤𝑖(𝑛) − 𝑖-й ваговий коефіцієнт адаптивного фільтра в момент часу 𝑛, визначає амплітудно-

фазове зважування відповідного елемента антенної решітки; 𝑥(𝑛 − 𝑖) – затримка на 𝑖 тактів 

вхідної вибірки сигналу; 𝑁 – порядок фільтра (кількість вагових коефіцієнтів); 𝑦(𝑛) – вихідний 

сигнал адаптивного фільтра сформованої ДН. 

Етап 2. На другому етапі розраховується значення миттєвої похибки між еталонним та 

вихідним сигналами: 

 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛), (2) 

 

де 𝑒(𝑛) – сигнал похибки в момент часу 𝑛, що характеризує відхилення від оптимального 

Вінерівського рішення; 𝑑(𝑛) – еталонний сигнал в момент часу 𝑛, який може представляти 

відомий сигнал корисного джерела або результат попередньої обробки. 

Етап 3. На третьому етапі відбувається корекція вектора вагових коефіцієнтів фільтра на 

основі градієнтного спуску: 

 

 𝑤(𝑛 + 1) = 𝑤(𝑛) + 2μ𝑒(𝑛)𝑥(𝑛), (3) 
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де μ – параметр збіжності (розмір кроку) LMS-алгоритму, 0 < μ <
1

λ𝑚𝑎𝑥
,  λ𝑚𝑎𝑥 – максимальне 

власне значення кореляційної матриці, яка визначає швидкість адаптації та стійкість 

алгоритму; 𝑤(𝑛 + 1) – вектор вагових коефіцієнтів на наступній ітерації; 𝑤(𝑛) – поточний 

вектор вагових коефіцієнтів; 𝑥(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1),… , 𝑥(𝑛 − 𝑁 + 1)]𝑇 – вектор вхідних 

даних, що містить поточну та попередні 𝑁 − 1 вибірок. 

Властивості збіжності та стійкості LMS-алгоритму визначаються вибором параметра μ. 

Для забезпечення збіжності в середньому квадратичному необхідно дотримуватись умови: 

 

 0 < μ <
2

3⋅𝑡𝑟[𝑅]
, (4) 

 
де 𝑡𝑟[𝑅] – слід кореляційної матриці вхідного сигналу. 

Часові константи збіжності для 𝑖-го вагового коефіцієнта визначаються як: 

 

 𝜏𝑖 =
1

2𝜇𝜆𝑖
, (5) 

 
де λ𝑖 – 𝑖-те власне значення кореляційної матриці для статистичної оцінки нерівномірності 

збіжності різних мод сигналу. 

Залишкова похибка після збіжності алгоритму становить: 

 

 𝜉𝑚𝑖𝑛 = 𝜎𝑑
2 (1 − ∑

𝜎𝑑𝑖
2

𝜎𝑑
2𝜆𝑖

𝑁−1
𝑖=0 ) + 𝜇 ∑

𝜎𝑑𝑖
2

𝜆𝑖

𝑁−1
𝑖=0 , (6) 

 
де σ𝑑

2  – потужність еталонного сигналу; σ𝑑𝑖
2  – потужність кросс-кореляції між еталонним 

сигналом та 𝑖-ю модою вхідного сигналу. 

Основною перевагою LMS-алгоритму є його обчислювальна простота 𝑂(𝑁) операцій на 

ітерацію та стійкість до зміни параметрів сигнального середовища, проте, швидкість збіжності 

алгоритму обмежена розкидом власних значень кореляційної матриці вхідного сигналу та 

вибором компромісного значення параметра μ між швидкістю адаптації та залишковою 

похибкою в усталеному режимі. 

Алгоритм RLS (Recursive Least Squares) [11] є реалізацією рекурсивної процедури 

методу найменших квадратів та одним з фундаментальних підходів в теорії адаптивної 

фільтрації. Ключова перевага алгоритму RLS, порівняно з методами на основі стохастичного 

градієнта, таким як LMS (Least Mean Squares), полягає у значно вищій швидкості збіжності. 

Ця властивість зумовлена тим, що на кожній ітерації алгоритм оновлює оцінку оберненої 

кореляційної матриці вхідного сигналу. Такий підхід дозволяє отримати більш точне 

наближення до оптимального вектора вагових коефіцієнтів фільтра. Кожна ітерація RLS-

алгоритму включає чотири основних кроки: 

1. На першому кроці відбувається формування ДН та обчислення вихідного сигналу 

антенної решітки: 

 

 𝑦(𝑛) = 𝑤𝐻⃗⃗ ⃗⃗⃗⃗ (𝑛)𝑥 (𝑛) = ∑ 𝑤𝑖
∗(𝑛)𝑥𝑖(𝑛)𝑁

𝑖=1 , (7) 

 

де 𝑤𝑖(𝑛) = 𝑎𝑖(𝑛) ⋅ 𝑒𝑗Δψ𝑖(𝑛) – комплексний ваговий коефіцієнт i-го елемента КАР, що визначає 

амплітуду 𝑎𝑖(𝑛) та фазовий зсув Δψ𝑖(𝑛); 𝑥 (𝑛) – вектор сигналів, прийнятих N елементами 

антенної решітки в момент часу n. 
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2. На другому кроці розраховується похибка адаптації для корекції напрямку наведення 

ДН: 

 

 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛), (8) 

 

де 𝑒(𝑛) – сигнал похибки, що характеризує відхилення від оптимальної траєкторії наведення 

на цільове джерело сигналу ϕ𝑠(𝑡);  𝑑(𝑛) – еталонний сигнал. 

3. На третьому кроці обчислюється вектор коефіцієнта підсилення для адаптивного 

управління ДН: 

 

 𝑘⃗ (𝑛) =
𝑃⃗ (𝑛−1)𝑥 (𝑛)

λ+𝑥𝐻⃗⃗ ⃗⃗  ⃗(𝑛)𝑃⃗ (𝑛−1)𝑥 (𝑛)
, (9) 

 

де 𝑘⃗ (𝑛) – вектор коефіцієнта підсилення, що забезпечує оптимальну швидкість адаптації в 

умовах нестаціонарної сигнально-завадової обстановки; λ – фактор забування (0.95 ≤ λ ≤ 1), 

що визначає час адаптації алгоритму до зміни положення рухомого об’єкта. 

4. На четвертому кроці відбувається адаптивне оновлення вагових коефіцієнтів та 

оберненої кореляційної матриці: 

 

 𝑤⃗⃗ (𝑛 + 1) = 𝑤⃗⃗ (𝑛) + 𝑘⃗ (𝑛)𝑒∗(𝑛), (10) 

 

 𝑃⃗ (𝑛) =
1

λ
[𝑃⃗ (𝑛 − 1) − 𝑘⃗ (𝑛)𝑥𝐻⃗⃗⃗⃗  ⃗(𝑛)𝑃⃗ (𝑛 − 1)], (11) 

 

де 𝑃⃗ (𝑛) ∈ 𝐶𝑁×𝑁 – обернена кореляційна матриця, що забезпечує максимізацію відношення 

сигнал/(завада та шум) 𝑆𝐼𝑁𝑅 =
𝑃𝑠

(𝑃𝑖+𝑃𝑛)
 та формування нулів ДН в напрямках завад ϕ𝑖(𝑡). 

Основною перевагою RLS-алгоритму є його швидка збіжність, яка досягається завдяки 

значно більшій обчислювальній складності порівняно з LMS-алгоритмом. 

Алгоритм Левенберга – Марквардта (Levenberg-Marquardt Algorithm) [12] (LMA) 

належить до методів нелінійної оптимізації типу найменших квадратів і поєднує переваги 

підходів Ґаусса – Ньютона та градієнтного спуску. У задачах адаптивного управління 

параметрами Smart антен, тобто вектором збуджень елементів (амплітудами й фазами), LMA 

забезпечує швидке та чисельно стійке наближення до оптимального значення. На відміну від 

класичних градієнтних методів, алгоритм характеризується квадратичною швидкістю 

збіжності до оптимуму завдяки апроксимації матриці Ґессе якобіаном у вигляді 𝐽⊤𝐽. Сукупність 

цих властивостей робить LMA одним із часто застосованих інструментів оптимізації ДН Smart 

антен у динамічних середовищах. Кожна ітерація алгоритму охоплює п’ять базових кроків. 

На першому кроці відбувається обчислення вектора похибок між еталонною та 

поточною ДН: 

 

 𝑒(𝑤𝑘) = 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑦(𝑤𝑘), (12) 

 
де 𝑒(𝑤𝑘) – вектор похибок на 𝑘-й ітерації; 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 – еталонна ДН; 𝑦(𝑤𝑘) = 𝐴(θ, ϕ)𝑤𝑘  – 

поточна ДН, сформована за допомогою вагових коефіцієнтів 𝑤𝑘 . 

На другому кроці розраховується матриця якобіана для лінеаризації нелінійної 

залежності: 

 𝐽𝑖𝑗 =
∂𝑒𝑖

∂𝑤𝑗
= −

∂𝑦𝑖(𝑤)

∂𝑤𝑗
|𝒘=𝒘𝒌

, (13) 
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де 𝐽 – матриця якобіана розміром 𝑀 × 𝑁, що характеризує чутливість кожної компоненти 

похибки до зміни вагових коефіцієнтів; 𝑀 – кількість точок оптимізації ДН; 𝑁 – кількість 

елементів антенної решітки. 

На третьому кроці обчислюється модифікована матриця Гессе з коефіцієнтом згасання, 

для забезпечення стійкості алгоритму: 

 

 𝐻𝐿𝑀 = 𝐽𝑇𝐽 + 𝜆𝑘𝐼, (14) 

 
де 𝐻𝐿𝑀  – модифікована матриця Ґессе; λ𝑘  – коефіцієнт згасання λ𝑘 > 0 для балансуванням 

вибору між методом Гаусса-Ньютона та градієнтним спуском; 𝐼 – одинична матриця. 

На четвертому кроці відбувається обчислення кроку оновлення вагових коефіцієнтів: 

 

 𝛥𝑤𝑘 = −(𝐽𝑇𝐽 + 𝜆𝑘𝐼)
−1𝐽𝑇𝑒

(𝑤𝑘), (15) 

 
де Δ𝑤𝑘  – вектор приросту вагових коефіцієнтів для мінімізації цільової функції  

𝐹(𝑤) =
1

2
|𝑒(𝑤)|2 з урахуванням коефіцієнта регуляризації. 

На п’ятому кроці здійснюється адаптивне оновлення вагових коефіцієнтів та коефіцієнта 

згасання: 

 

 𝑤𝑘+1 = 𝑤𝑘 + 𝛥𝑤𝑘 , (16) 

 

 𝜆𝑘+1 = {

𝜆𝑘

β
, якщо 𝐹(𝑤𝑘+1) <  𝐹(𝑤𝑘);

 інакше λ𝑘 · β,
}, (17) 

 

де β – коефіцієнт масштабування параметра демпфування для процесу автоматичного 

регулювання швидкості збіжності та стабільності алгоритму залежно від локальних 

властивостей цільової функції. 

Основною перевагою LMA-алгоритму є його швидка збіжність та стійкість до поганої 

обумовленості матриці якобіана, однак це досягається за рахунок необхідності обчислення на 

кожній ітерації інверсії матриці (𝐽𝑇𝐽 + λ𝑘𝐼), що значно збільшує обчислювальну складність 

порівняно з простими градієнтними методами. 

Алгоритм оптимізації роєм частинок (PSO) [13]. Оптимізація роєм частинок (PSO) є 

метаевристичним алгоритмом, який відтворює механізми колективної поведінки біологічних 

популяцій для глобальної оптимізації параметрів Smart антен. На противагу традиційним 

градієнтним методам, PSO оперує сукупністю потенційних рішень і використовує стохастичні 

оновлення параметрів, що в свою чергу, мінімізує «застрягання» в локальних екстремумах. 

Унаслідок цього, PSO широко розглядають як дієвий підхід до багатокритеріальної оптимізації 

ДН Smart антен у складній електромагнітній ситуації. 

Принцип колективної взаємодії частинок у PSO базується на концепції розподіленого 

інтелекту, де кожна частинка 𝑖 характеризується позицією 𝑥𝑖 та швидкістю 𝑣𝑖 у просторі 

параметрів Smart антен. Позиція частинки відповідає вектору вагових коефіцієнтів 

антенних елементів 𝑤𝑖 = [𝑤𝑖1,𝑤𝑖2,… ,𝑤𝑖𝑁]𝑇, а швидкість визначає напрямок та 

інтенсивність пошуку оптимальних параметрів ДН. 

Важливим в алгоритмі PSO є механізм пам’яті та соціального навчання, який 

реалізується за рахунок збереження кращої індивідуальної позиції кожної частинки 𝑝𝑖𝑏𝑒𝑠𝑡 і 

глобальної позиції всього рою 𝑔𝑏𝑒𝑠𝑡. Перша – виконує роль індивідуальної когнітивної опори, 

стимулюючи експлуатацію локально знайдених високоякісних рішень, тоді як друга – роль 

соціальної опори, спрямованої на розширене дослідження простору параметрів і групування 
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траєкторій частинок у бік найкращої на поточний момент конфігурації. У сукупності 

вищенаведене забезпечує баланс між локальним вдосконаленням та глобальним пошуком і 

прискорює наближення рою до оптимальної конфігурації Smart антен. 

Динаміка руху частинок описується системою рівнянь зі зворотнім зв’язком, що 

моделюють когнітивні та соціальні компоненти поведінки: 

 

 𝑣𝑖
(𝑡+1)

= 𝑤 ⋅ 𝑣𝑖
(𝑡) + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖

𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)), (18) 

 

 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡) + 𝑣𝑖

(𝑡+1)
, (19) 

 

де 𝑤 – коефіцієнт інерції контролю впливу попередньої швидкості частинок на поточний рух; 

𝑐1, 𝑐2 – коефіцієнти прискорення когнітивної та соціальної компонент; 𝑟1, 𝑟2 – випадкові числа, 

які рівномірно розподілені на інтервалі [0,1]. 
Стратегія адаптивного балансування між глобальним та локальним пошуком 

здійснюється шляхом динамічного регулювання параметрів алгоритму. Лінійне зменшення 

коефіцієнта інерції 𝑤(𝑡) = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
⋅ 𝑡 забезпечує інтенсивний пошуку статистичних 

закономірностей на початкових ітераціях та на завершальних стадіях оптимізації. 

Функція оцінки якості для кожної частинки визначається як багатокритеріальна цільова 

функція: 

 

 𝑓(𝑥𝑖) = α ⋅ 𝑆𝐿𝐿(𝑥𝑖) + β ⋅ 𝐵𝑊(𝑥𝑖) + γ ⋅ η(𝑥𝑖), (20) 

 

де 𝑆𝐿𝐿(𝑥𝑖) – рівень бічних пелюсток ДН; 𝐵𝑊(𝑥𝑖) – ширина головного променя; η(𝑥𝑖) – 

коефіцієнт використання антени; α, β, γ – вагові коефіцієнти важливості критеріїв. 

Механізм оновлення вибору оптимальних рішень будується на основі процесу 

порівняння поточного значення цільової функції з історичними даними та глобальною 

статистикою рою. Це забезпечує збереження еліти рішень та направлену еволюцію популяції 

до оптимального налаштування параметрів Smart антен. 

Основною перевагою PSO-алгоритму є його здатність до глобального пошуку оптимуму 

без потреби в обчисленні градієнтів та простота програмної реалізації, проте ефективність 

алгоритму суттєво залежить від правильного налаштування параметрів 𝑤, 𝑐1, 𝑐2 та розміру 

популяції для конкретної задачі оптимізації Smart антен. 

Генетичний алгоритм (ГA) [14] належить до класу еволюційних обчислювальних 

методів, які ґрунтуються на принципах природної селекції та генетичної спадковості. Одним 

із ключових напрямів застосування ГА є задачі глобальної оптимізації, зокрема оптимізація 

параметрів Smart антен. Сутність методу полягає у формуванні та еволюційному 

вдосконаленні популяції потенційних рішень за допомогою операторів схрещування, мутації 

та селекції. Такий підхід дає змогу здійснювати пошук оптимальної конфігурації ДН антен у 

багатовимірному просторі параметрів.  

Крім того, ГА вважається одним із найбільш ефективних алгоритмів для розв’язання 

комбінаторних задач оптимізації, зокрема за напрямком управління ДН антен, де параметри 

управління мають дискретний характер. Завдяки здатності до глобального пошуку, ГА 

забезпечує знаходження близьких до оптимальних рішень, навіть у складних нелінійних та 

багатокритеріальних задачах. Нижче розглянуто основні функції ГА. 

Концепція кодування хромосом, передбачає представлення кожного індивіда популяції 

у вигляді хромосоми 𝐶𝑖, що містить закодовані параметри вагових коефіцієнтів антенних 

елементів. Наприклад, для Smart антен з 𝑁 елементами хромосома може бути представлена 

у двійковому коді як 𝐶𝑖 = [𝑏𝑖1 𝑏𝑖2…𝑏𝑖𝐿], де 𝐿 =  𝑁 × 𝑚 – загальна довжина хромосоми, 𝑚 – 
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кількість біт для кодування одного вагового коефіцієнта. Декодування здійснюється за 

формулою: 

 

 𝑤𝑖𝑗 = 𝑤𝑚𝑖𝑛 +
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

2𝑚−1
⋅ ∑ 𝑏𝑖(𝑗𝑚+𝑘)

𝑚−1
𝑘=0 ⋅ 2𝑘, (21) 

 

де 𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 – границі допустимих значень вагових коефіцієнтів. 

Механізм природної селекції в генетичному алгоритмі реалізується за рахунок функції 

пристосованості (fitness function), суть якої полягає у процесі оцінки якості кожної хромосоми 

відповідно до критеріїв оптимізації ДН: 

 

 𝐹(𝐶𝑖) =
1

1+𝑓(𝑤𝑖)
, (22) 

 

де 𝑓(𝑤𝑖) – цільова функція, що може включати рівень бічних пелюстків SLL, коефіцієнт 

направленості 𝐷, ширину головного променя та інші характеристики Smart антен. 

Оператор схрещування (кросовер) забезпечує обмін генетичною інформацією між 

батьківськими хромосомами для створення нащадків. Одноточковий кросовер, з імовірністю 

𝑝𝑐 ∈ [0.6,0.9], реалізується наступним чином: 

 

 𝐶𝑐ℎ𝑖𝑙𝑑1 = [𝐶𝑝𝑎𝑟𝑒𝑛𝑡1[1: 𝑘], 𝐶𝑝𝑎𝑟𝑒𝑛𝑡2[𝑘 + 1: 𝐿]]𝐶𝑐ℎ𝑖𝑙𝑑2 = [𝐶𝑝𝑎𝑟𝑒𝑛𝑡2[1: 𝑘], 𝐶𝑝𝑎𝑟𝑒𝑛𝑡1[𝑘 + 1: 𝐿]], (23) 

 

де 𝑘 – випадково вибрана точка розрізу хромосоми. 

Оператор мутації вносить випадкові зміни в генетичний код для підтримання 

різноманітності популяції та запобігання передчасної конвергенції до локальних оптимумів. 

Бітова мутація, з імовірністю 𝑝𝑚 ∈ [0.001,0.1], змінює значення окремих генів: 

 

 𝑏𝑖𝑗
′ = {

𝑏𝑖𝑗 , якщо 𝑟𝑎𝑛𝑑 ( ), <  𝑝𝑚 

𝑏𝑖𝑗 , інакше
}, (24) 

 

де 𝑏𝑖𝑗  – інверсне значення біта. 

Стратегія формування нового покоління базується на принципах елітизму та турнірної 

селекції. Елітна стратегія забезпечує збереження найкращих індивідів поточного покоління: 

 

 𝑃𝑒𝑙𝑖𝑡𝑒 = 𝐶𝑖: 𝐹(𝐶𝑖) ≥ 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, (25) 

 

де 𝐹𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 – поріг пристосованості для відбору еліти. 

Критерії припинення еволюції можуть включати досягнення максимальної кількості 

поколінь 𝐺𝑚𝑎𝑥 , стагнацію найкращого рішення протягом 𝐺𝑠𝑡𝑎𝑔  поколінь або досягнення 

заданого рівня пристосованості 𝐹𝑡𝑎𝑟𝑔𝑒𝑡. 

Адаптивне управління параметрами GA реалізується через динамічне регулювання 

ймовірностей кросоверу та мутації залежно від різноманітності популяції: 

 

 𝑝𝑐(𝑡) = 𝑝𝑐,𝑚𝑎𝑥 −
𝑝𝑐,𝑚𝑎𝑥−𝑝𝑐,𝑚𝑖𝑛

𝐺𝑚𝑎𝑥
⋅ 𝑡, (26) 

 

 𝑝𝑚(𝑡) = 𝑝𝑚,𝑚𝑖𝑛 +
𝑝𝑚,𝑚𝑎𝑥−𝑝𝑚,𝑚𝑖𝑛

𝐺𝑚𝑎𝑥
⋅ 𝑡 (27) 
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Багатокритеріальна оптимізація Smart антен може бути реалізована за допомогою 

алгоритму NSGA-II (Non-dominated Sjrting Genetic Algoritm) [15], що дозволяє одночасно 

оптимізувати кілька субоптимальних цілей, таких як мінімізація рівня бічних пелюстків та 

максимізація коефіцієнта підсилення антени. 

Основною перевагою генетичного алгоритму є його здатність здійснювати глобальний 

пошук оптимального розв’язку у багатомодальних функціях, що дає змогу уникнути 

передчасної збіжності до локальних екстремумів. На відміну від градієнтних методів, ГА не 

потребує аналітичної або чисельної інформації про похідні цільової функції, що робить його 

ефективним інструментом для задач, де функція є недиференційованою, шумною або має 

складну топологію. Додатковою сильною стороною алгоритму є можливість паралельної 

обробки популяції, що підвищує ефективність пошуку у багатовимірному просторі 

параметрів.  

Разом із тим, застосування ГА супроводжується низкою обмежень. Зокрема, досягнення 

високої якості результатів вимагає виконання великої кількості обчислень функції 

пристосованості. Крім того, ефективність алгоритму істотно залежить від належного вибору 

його параметрів, таких як: розміру популяції, ймовірностей схрещування та мутації, а також 

критеріїв зупинки.  

Алгоритм MUSIC-WAA (Multiple Signal Classification – Weighted Average Algorithm) 

[16] є представником класу удосконалених спектральних методів високої роздільної здатності, 

що базується на основі механізму адаптивного зваженого усереднення, для підвищення 

точності оцінювання напрямків приходу сигналів у багатоелементних антенних решітках.  

На відміну від класичного MUSIC, який потребує повного спектрального сканування, MUSIC-

WAA оптимізує побудову псевдоспектра й зменшує обчислювальну складність більш ніж на 

99,9 % за кутової роздільної здатності 0.1°. На основі вищевикладеного, підхід MUSIC-WAA 

розглядається як один із найбільш перспективних для реалізації систем радіопеленгації в 

реальному часі на основі рівномірних кільцевих антенних решіток. Алгоритм складається  

з 7 основних етапів, які наведено нижче. 

Етап 1. Формування сигнальної моделі та початкових параметрів. Для розуміння 

процесів роботи алгоритму необхідно розглянути на прикладі математичної моделі системи 

Smart антен з 𝑀-елементною антенною решіткою, що приймає 𝐷 некорельованих сигналів із 

напрямків θ1, θ2, … , θ𝐷: 

 

 𝑥(𝑡) = 𝐴(𝜃)𝑠(𝑡) + 𝑛(𝑡), (28) 

 

де 𝑥(𝑡) ∈ 𝐶𝑀×𝟙 – вектор спостережень антенної решітки в момент часу 𝑡; 𝐴(θ) =
[𝑎(θ1), 𝑎(θ2), … , 𝑎(θ𝐷)] ∈ 𝐶𝑀×𝐷 – матриця керуючих векторів; 𝑠(𝑡) ∈ 𝐶𝐷×𝟙 – вектор 

комплексних амплітуд джерел випромінювання сигналу; 𝑛(𝑡) ∈ 𝐶𝑀×𝟙 – вектор адитивного 

білого гаусівського шуму з дисперсією σ𝑛
2 . 

Процес обчислення керуючого вектора для 𝑘-го джерела у випадку лінійної 

еквідистантної решітки визначається за рівнянням: 

 

 𝑎(𝜃𝑘) = [1, 𝑒−𝑗
2𝜋𝑑

λ
𝑠𝑖𝑛 𝜃𝑘 , … , 𝑒−𝑗(𝑀−1)

2𝜋𝑑

𝜆
𝑠𝑖𝑛 𝜃𝑘]

𝑇

, (29) 

 

де 𝑑 – відстань між сусідніми елементами решітки; λ – довжина хвилі випромінювання. 

Етап 2. На відміну від класичного MUSIC, що використовує рівномірне усереднення, 

алгоритм MUSIC-WAA впроваджує концепцію адаптивного зважування за рахунок 

обчислення вектора оптимальних вагових коефіцієнтів 𝑤 = [𝑤1, 𝑤2, … ,𝑤𝐿]
𝑇 рівняння: 

 



Системи і технології зв’язку, інформатизації та кібербезпеки. ВІТІ № 8 – 2025 
  

254 

 𝑅̂xxclassical =
1

L
∑ 𝑙 = 1𝐿𝑥(𝑙)𝑥𝐻(𝑙), (30) 

 

 𝑅̂xxWAA = ∑𝑙 = 1𝐿𝑤𝑙𝑥(𝑙)𝑥𝐻(𝑙) (31) 

 
де ∑ 𝑤𝑙

𝐿
𝑙=1 = 1 – вагові коефіцієнти, що задовольняють умовам нормалізації та невід’ємності 

𝑤𝑙 ≥ 0, ∀𝑙. 
Етап 3. На третьому етапі відбувається пошук оптимальних вагових коефіцієнтів, які 

визначаються шляхом розв’язання задачі мінімізації відхилення від ідеального шумового 

підпростору: 

 

 𝑤∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑤

{tr [𝑊 (𝑈𝑛
(𝑤)

𝑈𝑛
(𝑤)𝐻̂̂

− 𝑈𝑛
𝑖𝑑𝑒𝑎𝑙𝑈𝑛

𝑖𝑑𝑒𝑎𝑙𝐻)
2

]}, (32) 

 

за умов: ∑ 𝑤𝑙
𝐿
𝑙=1 = 1, 𝑤𝑙 ≥ 0, 𝑙 = 1,2,… , 𝐿, 

де 𝑊 – додатково-визначена вагова матриця; 𝑈𝑛
(𝑤)̂

 – оцінка матриці власних векторів шумового 

підпростору для зваженої кореляційної матриці. 

Етап 4. На цьому етапі відбувається ітераційне обчислення оптимальних вагових 

коефіцієнтів на основі експоненційного зважування: 

 

 𝑤𝑙
(𝑘+1)

=
𝑤𝑙

(𝑘)
𝑒𝑥𝑝(−𝛼

𝜕𝑓(𝑤(𝑘))

𝜕𝑤𝑙
)

∑ 𝑤𝑖
(𝑘)𝐿

𝑖=1 𝑒𝑥𝑝(−𝛼
𝜕𝑓(𝑤(𝑘))

𝜕𝑤𝑖
)

, (33) 

 

де α >  0 – параметр регуляризації, що контролює швидкість збіжності ітераційного процесу; 

𝑘 – номер ітерації; 𝑓(𝑤) – цільова функція оптимізації. 

Початкова ініціалізація здійснюється за законом рівномірного розподілу: 𝑤𝑙
(0)

=
1

𝐿
, ∀𝑙. 

Етап 5. Власна декомпозиція зваженої кореляційної матриці. Далі на етапі 5 виконується 

процес власного розкладу зваженої кореляційної матриці: 

 

 𝑅𝑥𝑥
𝑊𝐴𝐴̂ = 𝑈𝑠Λ𝑠𝑈𝑠

𝐻̂̂
̂

+ 𝑈𝑛Λ𝑛𝑈𝑛
𝐻̂̂

̂
, (34) 

 

де 𝑈𝑠̂ ∈ 𝐶𝑀×𝐷  – матриця власних векторів сигнального підпростору (відповідають 𝐷 

найбільшим власним значенням); 𝑈𝑛̂ ∈ 𝐶𝑀×(𝑀−𝐷) – матриця власних векторів шумового 

підпростору. 

Етап 6. Формування адаптивно-зваженого псевдоспектра. На шостому етапі 

відбувається процес обчислення псевдоспектра MUSIC-WAA з використанням адаптивних 

вагових коефіцієнтів для кожного власного вектора шумового підпростору: 

 

 𝑃𝑊𝐴𝐴(θ) =
1

∑ β𝑖|𝑎
𝐻(θ)𝑢𝑛

(𝑖)̂
|
2

𝑀−𝐷
𝑖=1

 , (35) 

 

де β𝑖 =
λ𝑠
𝑚𝑖𝑛̂

λ𝑛
(𝑖)̂

+γ
 – адаптивні вагові коефіцієнти власних векторів; λ𝑠

𝑚𝑖𝑛̂  – мінімальне власне 

значення сигнального підпростору; λ𝑛
(𝑖)̂

 – 𝑖-те власне значення шумового підпростору; 

γ >  0 – параметр регуляризації для забезпечення чисельної стійкості. 
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Етап 7. На наступному етапі здійснюється процес визначення напрямку приходу 

сигналів, що визначаються як локальні максимуми псевдоспектра 𝑃𝑊𝐴𝐴(θ) за умови 

перевищення заданого порогу детекції: 

 

 θ̂k = argmaxθ ∈ Θ𝑃𝑊𝐴𝐴(θ), 𝑘 = 1,2,… , 𝐷, (36) 

 

де Θ – область пошуку кутових напрямків. 

Критерії збіжності алгоритму включають досягнення максимальної кількості ітерацій 

𝐾𝑚𝑎𝑥 або виконання умови стагнації: 

 

 |𝑤(𝑘+1) − 𝑤(𝑘)|
2
<  ϵ , (37) 

 

де ϵ – заданий поріг збіжності. 

 

Основною перевагою MUSIC-WAA є підвищена роздільна здатність та стійкість до 

кореляційних спотворень завдяки адаптивному зважуванню спостережень та оптимізації 

підпросторових проєкцій. 

Отже, у результаті дослідження проведено узагальнення відомих методів управління ДН 

Smart антен, зокрема алгоритмів LMS/NLMS, RLS, Левенберга – Марквардта, MUSIC, GA та 

PSO. Встановлено, що стохастичні методи LMS/NLMS забезпечують прийнятну швидкодію 

при низьких обчислювальних витратах, рекурсивні методи RLS відзначаються високою 

точністю, проте мають підвищену складність, тоді як еволюційні підходи (GA, PSO) і MUSIC 

доцільно застосовувати у стаціонарних або слабкодинамічних умовах.  

Висновки. Таким чином, проведене дослідження дозволило комплексно проаналізувати 

сучасні підходи до адаптивного управління ДН Smart антен, що функціонують на рухомих 

об’єктах у динамічному середовищі. Встановлено, що ефективність системи зв’язку значною 

мірою визначається здатністю алгоритму швидко та точно реагувати на зміну просторового 

положення антенних елементів, характеристик сигналу та завад. Здійснений аналіз засвідчив, 

що класичні методи, зокрема LMS/NLMS і RLS, забезпечують прийнятну швидкодію та 

точність в умовах обмежених ресурсів, проте їх продуктивність суттєво знижується при 

високій мобільності та багатопроменевості середовища. 

Алгоритми на основі стохастичної оптимізації, такі як Particle Swarm Optimization (PSO) 

та Генетичні алгоритми (ГА), продемонстрували потенціал у глобальному пошуку 

оптимальних фазових і амплітудних параметрів, однак відзначаються підвищеною 

обчислювальною складністю та затримкою адаптації. Методи спектральної оцінки, MUSIC і 

MVDR, забезпечують високу просторову роздільну здатність і точність визначення напрямку 

приходу сигналів (DOA), проте їхня ефективність зменшується при наявності шумів, 

корельованих джерел і швидких змін положення антени. 

Результати порівняльного аналізу підтвердили, що найкращим компромісом між 

швидкістю адаптації, стабільністю та точністю управління є алгоритми класу NLMS, які здатні 

динамічно оновлювати вагові коефіцієнти антен з мінімальними обчислювальними витратами. 

Водночас, їх застосування обмежується лінійністю моделі середовища, що не враховує 

нелінійні ефекти відбиттів, дифракції та багатопроменевості. 

Тому, напрямком подальших досліджень є визначення оптимального алгоритму 

управління ДН в умовах динамічного середовища з урахуванням завадової обстановки, за 

допомогою стохастичної моделі випадкового переміщення типу Random Waypoint (RWP) та 

застосуванням мови програмування Python для імітаційного моделювання. 
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