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АНАЛІЗ МЕТОДІВ АВТОМАТИЗАЦІЇ УПРАВЛІННЯ ТРАНСПОРТНИМИ 

МЕРЕЖАМИ З ВИКОРИСТАННЯМ ТЕХНОЛОГІЇ ШТУЧНОГО ІНТЕЛЕКТУ 
 

Зростання попиту на персоналізовані можливості зв’язку спонукає транспортні мережі до еволюції в бік 

автономного управління, орієнтованого на потреби користувачів. У статті проводиться ґрунтовний аналіз 
концепції автономності транспортних мереж через впровадження штучного інтелекту, що дозволяє 

автоматизувати процеси на різних рівнях мережевої інфраструктури. Розглядаються сценарії застосування 

ШІ у транспортних системах IP-over-DWDM для таких завдань, як прогнозування трафіку, забезпечення високої 

якості передачі даних, виявлення аномалій, оптимізація мережевих ресурсів, а також проактивне управління 

відмовами. Особливу увагу приділено ролі штучного інтелекту у вдосконаленні ключових аспектів роботи 

мереж. Центральною частиною дослідження є запропонована архітектура управління, побудована на 

відкритих і стандартних API SDN. Вона дозволяє ефективно розподіляти транспортну мережу для 

багаторівневих систем та забезпечує доступ до нормалізованих даних у реальному часі, що стає основою 

автономного функціонування. Інтеграція штучного інтелекту сприяє оптимізації використання ресурсів, 

підвищенню якості послуг, зменшенню простоїв і скороченню операційних витрат, водночас забезпечуючи 

високу масштабованість мережевої інфраструктури. Використання методів машинного та глибокого 

навчання дає можливість реалізувати адаптивне управління мережею, враховуючи змінний рівень навантажень 
і невизначені події. Такий підхід відкриває перспективу створення самокерованих, самовідновлюваних та 

самонавчальних мереж, здатних адаптуватися до умов без людського втручання. Підсумовуючи, у статті 

наголошується на тому, що майбутнє транспортних систем тісно пов’язане з повною інтеграцією штучного 

інтелекту, стандартизованих платформ і відкритих екосистем. Це забезпечує сталий розвиток 

телекомунікаційної інфраструктури в умовах зростаючих вимог до продуктивності й надійності. Застосування 

ШІ дозволяє знизити витрати, покращити якість обслуговування та адаптувати мережі до постійного 

збільшення вимог споживачів. 

Ключові слова: штучний інтелект, автономне управління мережею, транспортні мережі, 

автоматизація мереж, планування мережі, проактивне управління відмовами, API SDN, IP-over-DWDM.  

 

O. Symonenko, I. Pylypchuk, S. Romanenko, A. Kondrus. Analysis of methods for automating transport 

network management using artificial intelligence technology 

The growing demand for personalized communication capabilities is driving transport networks to evolve towards 

autonomous management focused on user needs. The article provides a thorough analysis of the concept of autonomous 

transport networks through the implementation of artificial intelligence, which allows automating processes at different 

levels of the network infrastructure. The scenarios for the use of AI in IP-over-DWDM transport systems are considered 

for tasks such as traffic forecasting, ensuring high data transmission quality, anomaly detection, optimization of network 

resources, and proactive failure management. Particular attention is paid to the role of artificial intelligence in improving 

key aspects of network operation. The central part of the study is the proposed management architecture built on open 

and standard SDN APIs. It allows for efficient distribution of the transport network for multi-tier systems and provides 

access to normalized data in real time, which becomes the basis for autonomous operation. The integration of artificial 

intelligence helps optimize resource use, improve service quality, reduce downtime and reduce operating costs, while 

ensuring high scalability of the network infrastructure. The use of machine and deep learning methods makes it possible 
to implement adaptive network management, taking into account the changing level of loads and uncertain events. This 

approach opens up the prospect of creating self-managed, self-healing and self-learning networks that can adapt to 

conditions without human intervention. In conclusion, the article emphasizes that the future of transport systems is closely 

related to the full integration of artificial intelligence, standardized platforms and open ecosystems. This ensures the 

sustainable development of telecommunications infrastructure in the face of growing demands for productivity and 

reliability. The use of AI allows you to reduce costs, improve the quality of service and adapt networks to the constantly 

increasing demands of consumers. 

Keywords: artificial intelligence, autonomous network management, transport networks, network automation, 

network planning, proactive fault management, SDN API, IP-over-DWDM. 
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Актуальність та постановка завдання в загальному вигляді 

Інтелектуалізація управління мережевими інфраструктурами вже тривалий час виступає 

стратегічним пріоритетом для телекомунікаційних операторів. Це зумовлено не лише 

потребою підвищення конкурентоспроможності, а й необхідністю ефективного використання 

ресурсів та зниження операційних витрат. Водночас глобальна оптимізація мережевого 

трафіку залишається складним завданням, особливо у випадку масштабних розподілених 

систем, де традиційні підходи виявляються недостатньо результативними. 

До появи концепції програмно-визначених мереж (SDN) телекомунікаційні системи 

зіткнулися з низкою фундаментальних обмежень. Серед них – висока складність у плануванні 

та розгортанні, відсутність централізованого управління, обмежена видимість мережевих 

процесів, низький рівень використання пропускної здатності каналів та значні витрати на 

технічне обслуговування [1; 2]. 

Технологія SDN радикально змінила підходи до організації мережевого середовища 

завдяки розділенню площин керування та пересилання [6; 7]. Централізація управління 

створила умови для гнучкого планування ресурсів, а відкриті інтерфейси відкрили простір для 

інновацій у сфері додатків і сервісів [8; 9]. Це дозволяє не лише оперативно реагувати на зміни 

трафіку, а й адаптивно впроваджувати стратегії управління, підвищуючи загальний рівень 

інтелектуальності мережевої інфраструктури. У роботах [10–14] показано, що SDN сприяє 

реконфігурації обладнання та архітектур операторських мереж, вирішуючи проблеми 

непередбачуваності, нераціонального використання ресурсів і надмірних експлуатаційних 

витрат. 

Особливе значення в даному дослідженні має штучний інтелект (ШІ), який виконує 

функцію «прогнозиста». На відміну від традиційних рішень, що значною мірою залежать від 

людського досвіду, ШІ забезпечує точні передбачення, удосконалений аналіз даних та 

автоматизовану оптимізацію роботи мережі [15; 16]. 

Функціонал SDN-контролерів дозволяє збирати розширені дані про стан мережі, що 

створює передумови для застосування ШІ у прогнозуванні трафіку на основі історичних 

показників та динамічному коригуванні маршрутів залежно від параметрів каналів (пропускна 

здатність, навантаження, надійність, вартість). Це дає змогу запобігати перевантаженням і 

гарантувати високий рівень якості обслуговування. 

Останні наукові праці демонструють зростаючий інтерес до інтеграції ШІ в алгоритми 

маршрутизації, включно з використанням нейронних мереж, генетичних алгоритмів (GA) та 

методів оптимізації роїв частинок (PSO). Однак більшість підходів орієнтується лише на 

окремі параметри якості обслуговування (QoS), залишаючи поза увагою комплексний 

розподіл ресурсів та обмеження, притаманні кожному з методів. 

Запропоноване в цій статті дослідження розширює раніше представлені напрацювання 

[3–12], висвітлюючи еволюцію мережевого управління від ручних рішень до повністю 

автоматизованих архітектур. Запропонована модель передбачає збір нормалізованих даних у 

режимі реального часу (телеметрія, топологія, інвентаризація, показники продуктивності) та 

надання уніфікованих інтерфейсів для застосування алгоритмів машинного навчання (ML).  

Це створює фундамент для реалізації автономних мережевих операцій, що є наступним 

кроком у розвитку інтелектуальних систем управління. 

Аналіз останніх публікацій 

У дисертаційній роботі М. І. Бешлея [1] реалізовано спробу системно осмислити 

трансформацію інфокомунікаційних мереж у напрямі інтенційно-орієнтованих архітектур. 

Ключова ідея полягає у переході від реактивного до проактивного управління сервісами, де 

мережа не лише реагує на зміни трафіку, а й передбачає їх. Порівняно з класичними моделями 

адаптації, підхід Бешлея демонструє вищу ефективність за рахунок прогнозного розподілу 

ресурсів на основі ШІ. Проте основним викликом залишається складність формалізації 
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користувальницьких “інтенцій” суб’єктивних вимог до якості сервісу, що ускладнює 

автоматизацію управління у мультидоменних середовищах. 

Дослідження Р. С. Одарченка [2] робить акцент на структурно-функціональній 

оптимізації стільникових мереж, поєднуючи аналітичне моделювання з методами 

інтелектуальної оптимізації. Порівняно з підходом Бешлея, робота Одарченка має більш 

прикладний характер, орієнтована на зменшення енергоспоживання та оптимізацію смуги 

пропускання. Водночас, запропоновані алгоритми не повністю враховують контекстну 

мінливість користувальницьких сценаріїв, що обмежує їх гнучкість у середовищі 5G/6G. 

Дисертація Т. А. Максимюк [3] розширює попередні підходи, пропонуючи перехід до 

децентралізованого управління мобільними системами зв’язку. Її внесок полягає у 

впровадженні когнітивних агентів для самоконфігурації та самонавчання мережі, що підвищує 

автономність та зменшує залежність від централізованого контролера. Порівняно з Бешлеєм, 

де ШІ виступає інструментом прогнозу, у Максимюк він стає повноцінним елементом 

управління. Проте, відкритим залишається питання забезпечення безпеки та узгодження дій 

автономних вузлів у розподіленому середовищі. 

У сучасних дослідженнях [4; 5] спостерігається зсув акцентів від класичного розподілу 

транспортних ресурсів до концепції software-defined управління, де SDN (Software Defined 

Networking) виступає ядром адаптивної оркестрації. Аналіз цих праць свідчить, що саме 

програмно-керовані підходи дозволяють мінімізувати інерційність реакції мережі на зміни 

трафіку, однак водночас підвищують ризик перевантаження контролерів у великих 

мультидоменних середовищах. Тому актуальною залишається проблема масштабування SDN-

архітектур та їх стійкості до відмов. 

Інтеграція штучного інтелекту, як показано у [4–7], розширює функціональні 

можливості таких систем: нейромережеві моделі забезпечують не лише аналіз, а й 

предиктивне управління потоками трафіку. Проте аналітичний огляд свідчить про суттєву 

залежність ефективності цих рішень від якості навчальних даних і контекстної актуальності 

моделей. У практичних реалізаціях виникає компроміс між точністю прогнозів і 

обчислювальними витратами, що обмежує впровадження глибоких моделей у реальному часі. 

Окремий напрям формують дослідження з генеративного ШІ та великих мовних 

моделей, які позиціонуються як засіб для автоматизованого створення конфігурацій і сценаріїв 

управління. Аналітична оцінка цих підходів показує, що хоча велика мовна модель демонструє 

значний потенціал у прискоренні проєктування мережевих рішень, вони поки що не 

забезпечують необхідного рівня поясненя, що стримує їх інтеграцію у критичні системи 

зв’язку. 

Підсумовуючи результати аналізу джерел [16; 17], слід відзначити, що розвиток 

відкритих стандартів (TAPI, Open API, YANG) є передумовою для створення справді 

інтероперабельних телекомунікаційних екосистем. Водночас, наявні ініціативи переважно 

зосереджені на технічній сумісності, тоді як питання семантичної узгодженості даних і 

безпечної взаємодії ШІ-модулів поки залишаються недостатньо опрацьованими.  

Аналіз наведених підходів показав, що існуючі рішення орієнтовані переважно на 

централізоване управління мережею. Разом з тим, проблема адаптації алгоритмів ШІ до 

децентралізованих транспортних мереж залишається недостатньо дослідженою. 

У цій роботі пропонується підхід до підвищення ефективності функціонування 

транспортних мереж за рахунок впровадження інтелектуальних механізмів самонавчання та 

прогнозування стану мережі в реальному часі. Запропонований підхід передбачає 

використання децентралізованої архітектури, у якій вузли мережі здатні самостійно приймати 

рішення на основі локальних даних і узгоджувати свої дії з іншими елементами через 

механізми кооперативного навчання. Це дозволяє зменшити затримки при маршрутизації, 

підвищити стійкість мережі до перевантажень і збоїв, а також забезпечити адаптивне 

управління ресурсами без необхідності постійного втручання центрального контролера. 
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Тому виникає наукове завдання, яке полягає у розробленні та обґрунтуванні методів 

покращення автоматизації транспортних мереж шляхом інтеграції технологій штучного 

інтелекту з SDN, хмарними та крайовими обчисленнями, а також у створенні концептуальних 

підходів до стандартизації й уніфікації таких рішень для забезпечення інтероперабельності, 

стійкості та ефективності мережевих систем. 

Метою статті є аналіз і вдосконалення методів автоматизації управління транспортними 

мережами шляхом інтеграції технологій штучного інтелекту, що дозволяє підвищити 

ефективність, стійкість і адаптивність телекомунікаційних систем до змінних умов 

експлуатації. 

Виклад основного матеріалу. У традиційних мережах управління часто потребує 

ручного втручання, що займає багато часу і може призвести до помилок. Для усунення цих 

проблем телекомунікаційна індустрія переходить до автономних мереж, що дозволяє 

покращити ефективність операцій, підвищити адаптивність і забезпечити швидке реагування 

на змінені вимоги та мережеві проблеми (рис. 1).  

 

 
 

Рис. 1. Еволюція від ручного до повністю автономного управління мережею,  

що відображає рівні автономності та зростаючу роль автоматизації в роботі мережі 
 

Рівні автономності мережі. Еволюція мережевої автономії розгортається від рівня 0, де 

всі операції виконуються вручну, а контроль і усунення збоїв цілком покладаються на людину. 

Хоча цей рівень майже не зустрічається у сучасних інфраструктурах, він наочно демонструє 

обмеження традиційного підходу – низьку швидкість реагування та відсутність гнучкості. 

Рівень 1 позначається впровадженням базової автоматизації для окремих завдань, що 

зменшує навантаження на операторів, однак ключові рішення все ще залишаються за 

людиною.  

На рівні 2 автоматизація охоплює ширший спектр процесів. Використання аналітики 

даних і статичних політик дозволяє впроваджувати системи зворотного зв’язку, які частково 

коригують роботу мережі в режимі реального часу.  

Рівень 3 позначає перехід до умовної автономії. Завдяки штучному інтелекту та 

розвинутим механізмам аналізу даних мережа здатна самостійно адаптуватися до динамічних 

умов, що значно знижує потребу у втручанні оператора в стандартних сценаріях. 
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На рівні 4 досягається висока автономність: мережі здійснюють аналіз даних у 

реальному часі, застосовують алгоритми ШІ для вибору оптимальних рішень і можуть 

оперативно реагувати на складніші зміни без залучення людини. 

Рівень 5 характеризується повною автономності, коли мережа не лише самокерується,  

а й здатна до самонавчання на основі накопичених даних.  

Використання та управління даними. Автономні мережі функціонують у середовищі, де 

постійно генеруються величезні масиви різнорідних даних: від показників продуктивності та 

журналів активності до історичних шаблонів використання ресурсів.  

Поєднання SDN з методами штучного інтелекту та автономними рішеннями формує 

підґрунтя для створення інтелектуальних і саморегульованих мереж нового покоління. Вони 

не лише автоматизують рутинні операції, але й забезпечують адаптивність, прогнозування 

потреб користувачів та оптимізацію розподілу ресурсів у реальному часі, що є ключовим для 

розгортання сервісів 6G, IoT та масштабних хмарних обчислень. 

Крім того, інтеграція машинного та глибинного навчання дозволяє мережам своєчасно 

виявляти аномалії, прогнозувати перевантаження та автоматично коригувати маршрути 

передачі даних, зменшуючи ризик відмов і підвищуючи якість обслуговування. Використання 

генеративного ШІ відкриває нові можливості для автоматичного створення конфігурацій 

мереж, симуляції сценаріїв навантажень та оптимізації процедур самовідновлення. 

До основних компонентів архітектурної моделі SDN (рис. 2) належать: SDN-контролер, 

що виступає логічним ядром управління мережею. Він відповідає за централізоване прийняття 

рішень у сферах маршрутизації, реалізації політик безпеки, балансування навантаження та 

інших функцій управління. Північні API забезпечують взаємодію контролера з прикладними 

програмами, а південні API – з мережевим обладнанням. 

 

 
Рис. 2. Узагальнена структурна модель архітектури SDN 

 

Поєднання SDN і технологій штучного інтелекту дозволяє рівню керування збирати та 

аналізувати дані, формувати й реалізовувати стратегії, створюючи замкнений цикл 

інтелектуального управління. Контролер із підтримкою ШІ здатен усунути до 90 % мережевих 
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збоїв і загроз безпеці. Архітектура інтелектуального управління включає три основні блоки: 

модуль збору й моніторингу стану мережі, модуль інтелектуального аналізу ШІ та модуль 

SDN-контролера. 

Поєднання SDN і графових методів формує потужний механізм для створення 

інтелектуальних, гнучких і надійних мереж. Графові моделі дозволяють наочно відображати 

складні топології, автоматизувати прийняття рішень і знаходити оптимальні рішення в 

реальному часі. Завдяки цьому SDN перетворюється з технології управління мережею на 

універсальну платформу для інновацій, що знаходить широке застосування у хмарних 

обчисленнях, IoT та масштабних системах. 

Алгоритми маршрутизації застосовуються для визначення оптимальних шляхів 

передавання даних у мережах. Жадібний алгоритм ґрунтується на виборі локально 

оптимальних рішень на кожному етапі обчислень. Хоча такий підхід не завжди гарантує 

глобально найкращий результат, він дозволяє швидко отримати рішення, яке є наближеним до 

оптимального. У даному випадку жадібний алгоритм використовується для визначення 

маршруту з урахуванням таких параметрів, як найкоротший шлях, мінімальна затримка, 

максимальна пропускна здатність та балансування навантаження. 

Класичним прикладом жадібного алгоритму є алгоритм Дейкстри, який обчислює шлях 

із найменшою вагою між вершинами топологічного графа.  

K-найкоротших шляхів. Алгоритм k-найкоротших шляхів (KSP) використовується для 

обчислення k оптимальних маршрутів у зваженому графі, що містить вершини та ребра з 

відповідними вагами. Його робота ґрунтується на класичному алгоритмі Дейкстри, а пошук k 

шляхів реалізується за допомогою методу виключення (рис. 3). 

 

 
Рис. 3 Алгоритм k-найкоротших шляхів 

 

Граф ілюструє задачу пошуку k-найкоротших шляхів від вихідної вершини a до цільової 

вершини h. Ребра мають позитивні ваги, що дозволяє застосовувати класичний алгоритм 

Дейкстри для визначення найкоротшого шляху та його модифікації, для знаходження k 

найкоротших альтернативних маршрутів. 

Методи машинного навчання знаходять широке застосування у завданнях управління й 

оптимізації мереж, зокрема для аналізу трафіку, прогнозування навантаження, виявлення 

аномалій, моделювання структури та діагностики несправностей. Серед ключових підходів до 

оптимізації маршрутів застосовуються алгоритми рою частинок, генетичні алгоритми, методи 

моделювання відпалу та інші подібні рішення. 

Однією з ключових проблем сучасного управління телекомунікаційними мережами є 

ефективне узгодження та інтеграція даних, що надходять із великої кількості різнорідних 

мережевих елементів. Ці дані можуть мати різні форми та структуру: структуровані (метрики 
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продуктивності, системні повідомлення), напівструктуровані (конфігураційні файли, журнали 

подій) або повністю неструктуровані (документація, текстові звіти). Саме така різнорідність 

значно ускладнює процес їхньої обробки, знижує точність і надійність інформації та утруднює 

встановлення логічних зв’язків між різними джерелами даних. 

Особливе значення в автономних мережах має обробка даних у реальному часі та аналіз 

історичних показників. Такі системи повинні бути здатні швидко аналізувати великі обсяги 

інформації, оперативно приймати рішення та адаптуватися до змінних умов роботи мережі. 

Використання сучасних алгоритмів аналізу, а також високопродуктивних обчислювальних 

ресурсів дозволяє здійснювати обробку даних у момент їхнього надходження, що забезпечує 

оптимізацію продуктивності та оперативне реагування на потенційні відхилення в роботі 

мережевих компонентів. Це особливо важливо для підтримки стабільності роботи мережі, 

забезпечення високої якості обслуговування користувачів та своєчасного попередження 

можливих збоїв. 

Якість та точність вхідних даних безпосередньо визначають ефективність алгоритмів ШІ 

та ML, які застосовуються в автономних мережах. Водночас, методи оцінки та контролю 

якості телекомунікаційних даних поки що залишаються недостатньо розробленими, що 

створює додаткові виклики для розвитку автономних систем [8].  

Продемонстровано основну архітектуру SDN та взаємодію між їхніми ключовими 

компонентами. У центрі системи розташований контролер SDN, який виступає головним 

координаційним елементом мережі. Контролер здійснює управління мережевими пристроями 

та забезпечує інтеграцію високорівневих операційних функцій через Northbound API, що 

дозволяє підключати такі сервіси, як штучний інтелект, системи управління мережею та 

інструменти оптимізації трафіку (рис. 4). 

 

 
Рис. 4. Взаємодія між трьома основними рівнями системи 

 

З іншого боку, через Southbound API контролер безпосередньо взаємодіє з фізичними та 

віртуальними мережевими пристроями, такими як маршрутизатори, комутатори та точки 

доступу. Така структура дозволяє централізовано координувати роботу всіх елементів мережі, 

автоматизувати управління трафіком та забезпечувати гнучке масштабування інфраструктури. 

Дана архітектура демонструє ключові переваги SDN: розділення функцій управління та 

передачі даних, централізоване адміністрування та можливість інтеграції інтелектуальних 
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алгоритмів для прогнозування навантаження і оптимізації роботи мережі. Вона ілюструє, як 

сучасні підходи до програмно-визначувальних мереж підвищують ефективність і надійність 

телекомунікаційної інфраструктури, одночасно створюючи основу для впровадження 

автономних і самонавчальних систем управління мережею. 

Декларативний підхід до управління мережею представлений у концепції мереж на 

основі намірів (intent-based networking, IBN), яка зосереджена на визначенні запланованих 

цілей та результатів, а не на деталях реалізації [16]. Таким чином, генеративний ШІ може бути 

використаний у мережевих операціях для перетворення високорівневих намірів або цілей, 

визначених користувачами або операторами мережі, на конкретні робочі процеси і 

конфігурації, що необхідні для досягнення цих цілей. Моделі генеративного ШІ можуть бути 

навчання на технічній документації, даних конфігурації мережі та операційних процесах для 

генерування низькорівневих інструкцій, які забезпечать бажану поведінку мережі [17]. 

Сучасні концепції штучного інтелекту та їх поступова еволюція від універсальних 

підходів до спеціалізованих методів відкривають широкі можливості для застосування в 

різних галузях. На верхньому рівні ієрархії розглядається штучний інтелект як 

фундаментальна основа побудови систем, здатних відтворювати когнітивні функції людини. 

Його практична імплементація здійснюється через машинне навчання, що забезпечує 

алгоритмам здатність виявляти приховані закономірності та формувати прогностичні моделі 

на основі накопичених даних (рис. 5). 

 
Рис. 5. Ієрархія штучного інтелекту 

 

У сфері SDN-мереж, де управління трафіком і ресурсами виконується централізованим 

контролером, машинне навчання дає змогу підвищувати ефективність прийняття рішень – 

наприклад, у задачах маршрутизації чи балансування навантаження. Проте зі зростанням 

масштабів мережі та ускладненням трафіку традиційні методи машинного навчання 

виявляються недостатніми. 

Ранні дослідження [2; 3] були зосереджені на використанні класичних алгоритмів 

машинного навчання для аналізу трафіку та виявлення аномалій. Проте зі зростанням 
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складності та динаміки мережевих середовищ почали впроваджуватися моделі глибинного 

навчання, які забезпечують автоматичне виділення ознак та обробку великих потоків даних у 

реальному часі. 

Саме тут у гру вступає глибинне навчання, представлене на схемі як підгалузь 

машинного навчання. Його основою є штучні нейронні мережі, здатні працювати з 

багатовимірними та динамічними даними. Для SDN це означає можливість створення 

інтелектуальних систем управління, які не лише реагують на зміни в мережевому середовищі, 

а й прогнозують їх, забезпечуючи адаптивність, масштабованість та високий рівень якості 

обслуговування. 

Робота штучної нейронної мережі є однією з ключових технологій сучасного штучного 

інтелекту. Вона складається з трьох основних частин: вхідного шару, прихованих шарів та 

вихідного шару. 

У даній інтерпретації вхідний шар відповідає інфраструктурному рівню, що охоплює 

мережеві пристрої – комутатори, маршрутизатори, точки доступу. Саме вони формують 

первинний масив даних, який включає показники трафіку, стан каналів, рівень завантаженості 

та інші параметри мережі (рис. 6). 

 

 
Рис. 6. Схема багатошарової нейронної мережі 

 

Приховані шари в цій аналогії можна співвіднести з логікою SDN-контролера. На цьому 

етапі здійснюється багаторівневий аналіз отриманої інформації: виявлення закономірностей у 

потоках даних, прогнозування навантажень, виявлення аномалій, а також моделювання 

оптимальних сценаріїв маршрутизації. Подібно до нейронної мережі, яка завдяки нелінійним 

перетворенням виділяє суттєві ознаки, SDN-контролер перетворює «сирі» дані на 

структуровані рішення для управління мережею. 

Вихідний шар формує конкретні команди для мережевих елементів – зміна 

маршрутизації, балансування навантаження, застосування політик безпеки. Таким чином, 

реалізується замкнений цикл адаптивного управління, де дані з інфраструктури стають 

основою для прийняття рішень, а зворотний вплив підвищує ефективність функціонування 

мережі. 

Із інтеграції SDN та методів штучного інтелекту на основі нейронних мереж формується 

модель інтелектуального керування сучасними телекомунікаційними інфраструктурами. 

На верхньому рівні модель представлена у вигляді багатошарової нейронної мережі, де 

вхідний шар відповідає за прийом телеметрії та конфігураційних даних від SDN-мережі.  

До таких даних належать статистика потоків, інформація про затримки та втрати пакетів, 

рівень завантаженості каналів, а також політики безпеки та якості обслуговування. Ці вхідні 
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параметри формують цифровий зріз стану мережі, що надходить на аналіз до інтелектуального 

модуля. 

Прихований шар виконує роль обчислювального ядра системи. Саме тут відбувається 

багаторівнева обробка вхідних даних за допомогою методів глибинного навчання. Початкові 

рівні аналізують сирі статистичні показники, на проміжних етапах формуються 

закономірності та виявляються відхилення у поведінці трафіку, тоді як на вищих рівнях 

приймаються стратегічні рішення щодо оптимізації роботи мережі. Таким чином, нейронна 

мережа здатна виконувати прогнозування завантаження каналів, виявлення аномалій, таких як 

атаки типу DDoS, а також розробку рішень для динамічного балансування навантаження і 

перерозподілу ресурсів. Прихований шар у цій архітектурі фактично виступає «мозком», який 

трансформує потік даних у готові до реалізації керівні дії. 

Вихідний шар відображає сформовані рішення у вигляді конкретних інструкцій для 

SDN-контролера. Це можуть бути нові правила маршрутизації, оновлені списки контролю 

доступу, зміни у політиках забезпечення якості обслуговування чи активація додаткових 

віртуальних ресурсів. Кожен вихідний нейрон відповідає певному набору дій, які 

надсилаються контролером до мережевих пристроїв через southbound-інтерфейси, такі як 

OpenFlow. У такий спосіб система перетворює результати інтелектуального аналізу на реальні 

зміни у конфігурації мережі (рис. 7). 

 

 

Рис. 7. Схема роботи SDN в поєднанні зі ШІ 

 

Важливим елементом цієї архітектури є зворотний зв’язок. Рішення, що були застосовані 

до мережі, змінюють її поточний стан, який повторно збирається та надходить на вхід 

нейронної мережі. Це створює замкнений цикл навчання та оптимізації, у межах якого 

штучний інтелект постійно вдосконалює свої рішення на основі актуальних даних. 

Замкнений цикл інтелектуального управління мережею, що ґрунтується на використанні 

технологій штучного інтелекту для забезпечення її адаптивності та ефективності. Процес 

починається з моніторингу параметрів мережі, під час якого здійснюється збір і аналіз 

поточних даних про стан системи. Отримана інформація використовується для навчання 

моделей штучного інтелекту, які здатні виявляти закономірності у функціонуванні мережі та 

формувати прогностичні моделі. На основі цих моделей проводиться прогнозування 

екзогенних факторів, що можуть впливати на роботу мережі ззовні, таких як зміни 
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навантаження, трафіку чи зовнішнього середовища. Далі відбувається адаптація ендогенних 

факторів, спрямована на внутрішнє налаштування параметрів системи відповідно до 

прогнозованих умов. Завершальним етапом є оновлення параметрів мережі, яке забезпечує 

актуалізацію її стану та підвищення ефективності функціонування. Таким чином, 

представлений цикл формує основу інтелектуального управління, що забезпечує безперервне 

самонавчання, гнучкість і стійкість мережевої інфраструктури до змін середовища (рис. 8). 

 

 
 

Рис. 8. Циклічна модель інтелектуального управління 

 

Інтеграція SDN з методами штучного інтелекту забезпечує низку ключових переваг.  

По-перше, відбувається автоматизація процесів керування мережею, що дозволяє мінімізувати 

ручну конфігурацію. По-друге, система набуває здатності адаптуватися до динамічних змін 

трафіку в реальному часі. Крім того, завдяки використанню прогнозних моделей, з’являється 

можливість передбачати перевантаження та реагувати на них превентивно. Суттєвою є також 

роль у сфері кібербезпеки, адже виявлення аномалій та підозрілих потоків дозволяє своєчасно 

блокувати потенційні загрози. Нарешті, застосування такої архітектури сприяє оптимізації 

розподілу ресурсів, зменшенню затримок і підвищенню якості надання мережевих послуг. 

Таким чином, представлена модель може розглядатися як архітектура програмно-

визначеної мережі з інтелектуальним модулем оптимізації, у якій нейронна мережа виконує 

функцію динамічного оркестратора правил і рішень, що забезпечує гнучке, безпечне та 

ефективне керування складними мережевими інфраструктурами. 

Принципи, закладені в архітектурі штучних нейронних мереж, мають концептуальну 

близькість до механізмів SDN. Обидва підходи передбачають ітеративний аналіз даних, 

виявлення закономірностей та побудову рішень, спрямованих на підвищення адаптивності й 

оптимізацію системи. 

Сучасні тенденції розвитку транспортних мереж свідчать про поступовий і 

невідворотний перехід від класичних методів управління мережевою інфраструктурою до 

рішень, орієнтованих на ШІ. Ця тенденція обумовлена зростаючою складністю мереж, 

динамічними змінами трафіку та високими вимогами до QoS, пропускної здатності та 

енергоефективності. 

Для оцінки ефективності інтеграції ШІ у транспортні мережі було проведено 

комплексний порівняльний аналіз між класичними підходами, такими як OSPF, IS-IS та 

традиційними рішеннями SDN сучасними механізмами ШІ, які застосовують методи 

машинного навчання, глибинного навчання та підкріплювального навчання.  
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В таблиці 1 представлено наступне: 

1. Затримка передачі пакетів (Latency). Одним із критичних показників ефективності 

мереж є середня затримка передачі пакетів у умовах динамічного навантаження. Дослідження 

показують, що у традиційних мережах, з використанням класичних алгоритмів маршрутизації 

OSPF та IS-IS, середня затримка складає 40–55 мс. Це пояснюється обмеженою адаптивністю 

цих алгоритмів до швидких змін трафіку. 

Натомість застосування методів глибинного підкріплювального навчання ШІ дозволяє 

мережі прогнозувати зміни навантаження, адаптивно перенаправляти потоки та знижувати 

середню затримку на 25–40 %, до значень 25–35 мс. Така оптимізація особливо ефективна у 

мережах із високим ступенем змінності трафіку, наприклад, у дата-центрах та мережах 

провайдерів мобільного зв’язку; 

2. Пропускна здатність та утилізація каналів. У сфері пропускної здатності класичні 

SDN-рішення забезпечують утилізацію мережевих ресурсів на рівні 70–75 % у пікові години. 

Це обумовлено статичною або обмежено адаптивною конфігурацією маршрутів та розподілом 

ресурсів. Інтелектуальні механізми ШІ, здатні прогнозувати зміни трафіку та оптимально 

розподіляти ресурси, підвищують утилізацію каналів до 85–90 %. Такий підхід дозволяє не 

лише ефективніше використовувати наявні ресурси, але й зменшувати вузькі місця у мережі, 

що є критично важливим для забезпечення QoS у великих корпоративних та операторських 

мережах; 

3. Моніторинг та виявлення аномалій. Традиційні системи моніторингу та виявлення 

аномалій характеризуються точністю близько 80%, що часто супроводжується високим рівнем 

хибнопозитивних спрацювань. Використання моделей машинного навчання – зокрема 

нейронних мереж та ансамблевих методів ШІ – дозволяє підвищити точність виявлення до  

93–96 %, при цьому зменшуючи кількість хибнопозитивних сигналів приблизно на 30 %.  

Це забезпечує більш оперативну і точну реакцію на потенційні загрози, а також зменшує 

навантаження на мережевий персонал; 

4. Енергоспоживання. Ефективність енергоспоживання є ще одним критичним фактором 

у сучасних мережах, особливо в умовах глобального тренду на “зелений” ІТ. Класичні підходи 

зазвичай використовують ресурси обладнання на рівні 100 %, незалежно від поточного 

навантаження. ШІ-рішення застосовують динамічне керування компонентами мережевого 

обладнання – відключення неактивних модулів, оптимальне перемикання портів та адаптивне 

розподілення потоків. Це дозволяє досягти економії енергії на рівні 15–20 % у транспортних 

ядрах та дата-центрах без втрати якості обслуговування; 

5. Гнучкість управління мережею та автоматизація. Особлива цінність рішень на основі 

ШІ проявляється у підвищенні гнучкості управління мережею. Традиційні методи 

маршрутизації та SDN-рішення часто вимагають ручного втручання у випадку зміни трафіку 

або аварійних ситуацій, що збільшує час реакції з декількох секунд до хвилин. Сучасні моделі 

ШІ дозволяють автоматизувати до 80 % рутинних операцій, скорочуючи час реакції до секунд, 

підвищуючи стабільність роботи та знижуючи ризик помилок, пов’язаних із людським 

фактором.  

Таблиця 1 

Основні відмінності між автоматизацією транспортних мереж  

з використанням штучного інтелекту та класичні рішення 
Показник Класичні рішення  Рішення на основі ШІ 

Середня затримка 

пакетів 

40–55 мс 25–35 мс (зниження на 25–40 %) 

Утилізація пропускної 

здатності 

70–75 % у пікові періоди 85–90 % завдяки прогнозуванню 

трафіку 

Точність виявлення 

аномалій 

~80 % 93–96 %, зменшення хибнопозитивних 

спрацювань на ~30 % 



Системи і технології зв’язку, інформатизації та кібербезпеки. ВІТІ № 8 – 2025 
  

195 

Показник Класичні рішення  Рішення на основі ШІ 

Енергоспоживання 

мережевого обладнання 
Використання ресурсів на 
100 % 

Економія 15–20 % завдяки 
динамічному управлінню 

компонентами 

Автоматизація 

управління мережею 
Ручне втручання при зміні 
трафіку або аваріях 

До 80 % рутинних операцій 
автоматизовано, час реакції 

скорочується до секунд 

Гнучкість адаптації до 

змін трафіку 

Обмеження, потребує 

ручного налаштування 

Висока, мережа самостійно 

підлаштовується під зміни 

 

Застосування ШІ в транспортних мережах забезпечує комплексне підвищення 

ефективності мережевої інфраструктури: зменшення затримки, підвищення пропускної 

здатності, точніше виявлення аномалій, оптимізацію енергоспоживання та автоматизацію 

управління. Це відкриває нові перспективи для побудови мереж нового покоління, які здатні 

адаптуватися до постійно зростаючих вимог користувачів і бізнесу. 

З використанням ШІ цей процес значно спрощується. Мережевий оператор описує 

вимоги до послуги природною мовою. ШІ автоматично аналізує вимоги та перетворює їх на 

необхідні конфігурації. Контролер SDN автоматично налаштовує мережеві пристрої. ШІ 

проводить автоматичне тестування та перевірку відповідності вимогам. 

Оцінка ефективності автоматизації транспортних мереж базується на декількох 

ключових показниках, які характеризують продуктивність, економічну доцільність, швидкість 

впровадження та покращення якості обслуговування. У загальному вигляді формула має 

наступний вигляд: 

 

𝐸𝐴𝑈𝑇𝑂 =
𝐾1×∆𝑇+𝐾2×∆𝐶+𝐾3×∆𝑄+𝐾4×∆𝐴

𝐾1+𝐾2+𝐾3+𝐾4

 ,    (1) 

 

де 𝐸𝐴𝑈𝑇𝑂  – інтегральна оцінка ефективності автоматизації; 

K1, K2, K3, K4 – вагові коефіцієнти важливості кожного з факторів, визначені експертним 

шляхом залежно від пріоритетів (наприклад, для оператора або провайдера), 

∆𝑇 =
𝑇початковий−𝑇новий

𝑇початковий
  – відносне скорочення часу на виконання операцій;  

∆𝐶 =
𝐶початковий−𝐶новий

𝐶початковий
 – економія витрат; 

∆𝑄 – покращення якості обслуговування (QoS, надійність, пропускна здатність тощо);  

 

∆𝑄 =
(

𝐴 2
𝐴max

+1− 
𝐷2

𝐷max
+1−

𝐽2
𝐽max

+1−
𝑃𝐿2

𝑃𝐿max
)−(

𝐴 1
𝐴max

+1− 
𝐷1

𝐷max
+1−

𝐽1
𝐽max

+1−
𝑃𝐿1

𝑃𝐿max
)

(
𝐴 1

𝐴max
+1− 

𝐷1
𝐷max

+1−
𝐽1

𝐽max
+1−

𝑃𝐿1
𝑃𝐿max

)
      (2) 

де A – пропускна здатність;  

D – затримка;  

J – затримка між пакетами;  

PL – втрата пакетів;  

Tmax, Dmax, Jmax, PLmax –  цільові (граничні) значення для нормалізації; 

∆А =
𝐴початковий−𝐴новий

𝐴початковий
 – покращення адаптивності/гнучкості мережі.  

 

Отримані аналітичні дані базуються на результатах моделювання процесів управління 

транспортними мережами з використанням архітектури програмно-визначених мереж (SDN) 

у поєднанні з алгоритмами штучного інтелекту, зокрема методами машинного навчання та 

інтелектуальної маршрутизації. Для оцінювання впливу ШІ на ключові параметри 
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продуктивності мережі застосовано імітаційне моделювання у середовищах Mininet та NS-3, 

що дозволило відтворити типові сценарії навантаження та трафікових змін у динамічному 

середовищі. 

У дослідженні було використано алгоритми прогнозування трафіку на основі 

рекурентних нейронних мереж та механізми інтелектуального балансування навантаження із 

застосуванням методів кластеризації. Дані щодо затримки пакетів, пропускної здатності, 

точності виявлення аномалій та енергоспоживання отримано шляхом багаторазового 

вимірювання в умовах змінних параметрів мережевої топології та навантаження. 

Показники (зменшення затримки з 40–55 мс до 25–35 мс, підвищення пропускної 

здатності до 85–90 %, зростання точності детекції до 93–96 %, зниження енергоспоживання на 

15–20 %) мають узагальнений характер і отримані шляхом нормалізації результатів кількох 

експериментальних сценаріїв. Для забезпечення достовірності проведено порівняння з 

базовою конфігурацією без застосування інтелектуальних механізмів управління. 

Таким чином, числові результати є наслідком системного аналітично-

експериментального підходу, що поєднує моделювання, машинне навчання та статистичну 

обробку даних, і відображають типові тенденції впливу ШІ на ефективність функціонування 

транспортних мереж. 

Застосування методів штучного інтелекту має відчутний вплив на ключові параметри 

продуктивності мережі. У частині затримки пакетів штучний інтелект забезпечує зменшення 

середніх значень із 40–55 мс до 25–35 мс завдяки прогнозуванню змін трафіку та адаптивному 

маршрутизаційному керуванню. Пропускна здатність каналів зростає з рівня  

70–75 % до 85–90 % завдяки інтелектуальному балансуванню навантаження. У сфері 

моніторингу та виявлення аномалій точність зростає з ~80 % до 92–94 %, при цьому 

зменшується кількість хибнопозитивних спрацювань. Енергоспоживання знижується на  

10–15 % завдяки адаптивному керуванню компонентами обладнання. Нарешті, гнучкість 

управління мережею підвищується завдяки автоматизації до 80 % рутинних операцій, що 

скорочує час реакції з хвилин до секунд (рис. 9). 

 

 
 

Рис. 9. Порівняння компонент ефективності транспортних мереж з використанням ШІ 

 

Зазначені значення мають орієнтовний характер і залежать від особливостей 

впровадження, а також від складності мережевої інфраструктури. Важливим чинником є 

якість даних, на яких навчаються алгоритми ШІ, адже вона безпосередньо впливає на точність 

отриманих результатів. 

Управління на базі ШІ. Автоматизація на основі ШІ дозволяє абстрагуватися від 

специфікацій, притаманних різним виробникам обладнання, що спрощує процес управління 

та зосереджує увагу операторів на досягненні стратегічних цілей.  
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Для виявлення тенденцій і вдосконалення налаштувань мережеві генеративні моделі 

можуть навчатися на основі операційних журналів, історичних даних та найкращих практик. 

Це дає змогу підвищити продуктивність, зменшити потребу в ручному управлінні та 

оптимізувати використання ресурсів.  

Висновки 

Проведений аналіз підтвердив, що інтеграція технологій штучного інтелекту у процеси 

автоматизації транспортних мереж забезпечує значне підвищення продуктивності, стійкості 

та адаптивності сучасних телекомунікаційних систем. Використання інтелектуальних 

алгоритмів у поєднанні з архітектурою SDN, хмарними та крайовими обчисленнями дозволяє 

реалізувати динамічне управління ресурсами, прогнозування навантажень і оптимізацію 

маршрутів передачі даних у реальному часі. Розроблені концептуальні підходи до 

стандартизації та уніфікації інтеграційних рішень забезпечують інтероперабельність та 

масштабованість мережевої інфраструктури, що особливо важливо для великих розподілених 

систем. Отримані результати дозволяють формувати науково-практичну основу для 

впровадження інтелектуальних систем управління, які здатні адаптуватися до змінних умов 

експлуатації та мінімізувати вплив людського фактора. 

Таким чином, дослідження підтверджує, що інтеграція ШІ у транспортні мережі не лише 

підвищує їхню продуктивність, а й відкриває можливості для розвитку нових сервісів і 

автоматизованих рішень, здатних забезпечувати автономне управління та самокорекцію 

мережевих процесів.  

Перспективи подальших досліджень включають впровадження та вдосконалення 

сценаріїв використання ШІ в реальних умовах, зокрема в контексті архітектури мережевого 

розгалуження для транспортних мереж IP-over-DWDM. З переходом мереж від ручного 

управління до повністю автономного, відповідно до рівнів автономії, важливо покращити 

взаємодію між людиною та ШІ через вдосконалені інтерфейси та системи підтримки 

прийняття рішень. Оптимізація впровадження технологій ШІ в автономних мережах буде 

залежати від цих досягнень, і безперервні дослідження мають вирішальне значення для 

створення інтелектуальних, адаптивних і стійких автономних мережевих рішень. 

Перспективними напрямками подальших досліджень є розробка методів самонавчання для 

автономних мереж, інтеграція ШІ із засобами кібербезпеки, оптимізація енергоспоживання в 

умовах змінного навантаження, а також формування стандартів взаємодії для уніфікації 

інтелектуальних рішень у телекомунікаційній галузі. 
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